Cargando…

Chromatic Pupillometry as a Putative Screening Tool for Heritable Retinal Disease in Rhesus Macaques

PURPOSE: Non-human primates (NHPs) are useful models for human retinal disease. Chromatic pupillometry has been proposed as a noninvasive method of identifying inherited retinal diseases (IRDs) in humans; however, standard protocols employ time-consuming dark adaptation. We utilized shortened and st...

Descripción completa

Detalles Bibliográficos
Autores principales: Salpeter, Elyse M., Moshiri, Ala, Ferneding, Michelle, Motta, Monica J., Park, Sangwan, Skouritakis, Chrisoula, Thomasy, Sara M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10289275/
http://dx.doi.org/10.1167/tvst.12.6.13
Descripción
Sumario:PURPOSE: Non-human primates (NHPs) are useful models for human retinal disease. Chromatic pupillometry has been proposed as a noninvasive method of identifying inherited retinal diseases (IRDs) in humans; however, standard protocols employ time-consuming dark adaptation. We utilized shortened and standard dark-adaptation protocols to compare pupillary light reflex characteristics following chromatic stimulation in rhesus macaques with achromatopsia to wild-type (WT) controls with normal retinal function. METHODS: Nine rhesus macaques homozygous for the p.R656Q mutation (PDE6C HOMs) and nine WT controls were evaluated using chromatic pupillometry following 1-minute versus standard 20-minute dark adaptations. The following outcomes were measured and compared between groups: pupil constriction latency, peak constriction, pupil constriction time, and constriction velocity. RESULTS: Pupil constriction latency was significantly longer in PDE6C HOMs with red-light (P = 0.0002) and blue-light (P = 0.04) stimulation versus WT controls. Peak constriction was significantly less in PDE6C HOMs with all light stimulation compared to WT controls (P < 0.0001). Pupil constriction time was significantly shorter in PDE6C HOMs versus WT controls with red-light (P = 0.04) and white-light (P = 0.003) stimulation. Pupil constriction velocity was significantly slower in PDE6C HOMs versus WT controls with red-light (P < 0.0001), blue-light (P < 0.0001), and white-light (P = 0.0002) stimulation. Dark adaptation time only significantly affected peak (P = 0.008) and time of pupil constriction (P = 0.02) following blue-light stimulation. CONCLUSIONS: Chromatic pupillometry following 1- and 20-minute dark adaptation is an effective tool for screening NHPs for achromatopsia. TRANSLATIONAL RELEVANCE: Rapid identification of NHPs with IRDs will provide animal research models to advance research and treatment of achromatopia in humans.