Cargando…
Deep-Fuzz: A synergistic integration of deep learning and fuzzy water flows for fine-grained nuclei segmentation in digital pathology
Robust semantic segmentation of tumour micro-environment is one of the major open challenges in machine learning enabled computational pathology. Though deep learning based systems have made significant progress, their task agnostic data driven approach often lacks the contextual grounding necessary...
Autores principales: | Das, Nirmal, Saha, Satadal, Nasipuri, Mita, Basu, Subhadip, Chakraborti, Tapabrata |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10289330/ https://www.ncbi.nlm.nih.gov/pubmed/37352172 http://dx.doi.org/10.1371/journal.pone.0286862 |
Ejemplares similares
-
Correction: Deep-Fuzz: A synergistic integration of deep learning and fuzzy water flows for fine-grained nuclei segmentation in digital pathology
por: Das, Nirmal, et al.
Publicado: (2023) -
MalFuzz: Coverage-guided fuzzing on deep learning-based malware classification model
por: Liu, Yuying, et al.
Publicado: (2022) -
Detection of spreader nodes in human-SARS-CoV protein-protein interaction network
por: Saha, Sovan, et al.
Publicado: (2021) -
FunPred-1: Protein function prediction from a protein interaction network using neighborhood analysis
por: Saha, Sovan, et al.
Publicado: (2014) -
FunPred 3.0: improved protein function prediction using protein interaction network
por: Saha, Sovan, et al.
Publicado: (2019)