Cargando…

On-site detection system of Candidatus Liberibacter asiaticus by using TaqMan probe-based insulated isothermal polymerase chain reaction (iiPCR)

Citrus Huanglongbing (HLB) is one of the most destructive diseases of citrus plants caused by the obligate and phloem-limiting bacterium Candidatus Liberibacter asiaticus (Las). Reliable detection methods are important for successful control of the disease. This study was aimed to develop a rapid an...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Shun-Min, Wu, Meng-Ling, Hung, Ting-Hsuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10289410/
https://www.ncbi.nlm.nih.gov/pubmed/37352328
http://dx.doi.org/10.1371/journal.pone.0287699
Descripción
Sumario:Citrus Huanglongbing (HLB) is one of the most destructive diseases of citrus plants caused by the obligate and phloem-limiting bacterium Candidatus Liberibacter asiaticus (Las). Reliable detection methods are important for successful control of the disease. This study was aimed to develop a rapid and user-friendly on-site detection system for Las using the TaqMan probe-based insulated isothermal polymerase chain reaction (iiPCR) assay. The Las-specific on-site detection system could be completed within one hour by simple DNA extraction coupled with a portable POCKIT device, which can perform PCR amplification and automatically provide qualitative results derived from fluorescence signals. The sensitivity of the TaqMan probe-iiPCR assay could be as low as single copy of Las, comparable to a real-time PCR method. Further testing of the field citrus samples showed 100% agreement between the TaqMan probe-iiPCR assay and the real-time PCR method, and the on-site detection system also demonstrated a great performance of Las detection. With high specificity and sensitivity, the on-site detection system developed in this study becomes a simple, rapid and powerful tool for detecting Las in fields.