Cargando…
Spatial and temporal characteristics analysis and prediction model of PM(2.5) concentration based on SpatioTemporal-Informer model
The primary cause of hazy weather is PM(2.5), and forecasting PM(2.5) concentrations can aid in managing and preventing hazy weather. This paper proposes a novel spatiotemporal prediction model called SpatioTemporal-Informer (ST-Informer) in response to the shortcomings of spatiotemporal prediction...
Autores principales: | Ma, Zhanfei, Luo, Wenli, Jiang, Jing, Wang, Bisheng, Ma, Ziyuan, Lin, Jixiang, Liu, Dongxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10289464/ https://www.ncbi.nlm.nih.gov/pubmed/37352292 http://dx.doi.org/10.1371/journal.pone.0287423 |
Ejemplares similares
-
Spatio-Temporal Variation of PM(2.5) Concentrations and Their Relationship with Geographic and Socioeconomic Factors in China
por: Lin, Gang, et al.
Publicado: (2013) -
Association of ambient PM(2.5) concentration with tuberculosis reactivation diseases—an integrated spatio-temporal analysis
por: Lau, Leonia Hiu Wan, et al.
Publicado: (2023) -
Temporal and Spatial Features of the Correlation between PM(2.5) and O(3) Concentrations in China
por: Chen, Jiajia, et al.
Publicado: (2019) -
Spatial Autocorrelation and Temporal Convergence of PM(2.5) Concentrations in Chinese Cities
por: Wang, Huan, et al.
Publicado: (2022) -
A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM(2.5) Concentrations across Great Britain
por: Schneider, Rochelle, et al.
Publicado: (2020)