Cargando…
Dual-center validation of using magnetic resonance imaging radiomics to predict stereotactic radiosurgery outcomes
BACKGROUND: MRI radiomic features and machine learning have been used to predict brain metastasis (BM) stereotactic radiosurgery (SRS) outcomes. Previous studies used only single-center datasets, representing a significant barrier to clinical translation and further research. This study, therefore,...
Autores principales: | DeVries, David A, Tang, Terence, Alqaidy, Ghada, Albweady, Ali, Leung, Andrew, Laba, Joanna, Lagerwaard, Frank, Zindler, Jaap, Hajdok, George, Ward, Aaron D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10289521/ https://www.ncbi.nlm.nih.gov/pubmed/37358938 http://dx.doi.org/10.1093/noajnl/vdad064 |
Ejemplares similares
-
Predicting stereotactic radiosurgery outcomes with multi-observer qualitative appearance labelling versus MRI radiomics
por: DeVries, David A., et al.
Publicado: (2023) -
Performance sensitivity analysis of brain metastasis stereotactic radiosurgery outcome prediction using MRI radiomics
por: DeVries, David A., et al.
Publicado: (2022) -
The current status and shortcomings of stereotactic radiosurgery
por: Mehrens, Hunter, et al.
Publicado: (2022) -
Radiomic analysis of magnetic resonance imaging predicts brain metastases velocity and clinical outcome after upfront radiosurgery
por: Hsu, Che-Yu, et al.
Publicado: (2020) -
Radiomic features define risk and are linked to DNA methylation attributes in primary CNS lymphoma
por: Nenning, Karl-Heinz, et al.
Publicado: (2023)