Cargando…
Phenotyping Key Fruit Quality Traits in Olive Using RGB Images and Back Propagation Neural Networks
To predict oil and phenol concentrations in olive fruit, the combination of back propagation neural networks (BPNNs) and contact-less plant phenotyping techniques was employed to retrieve RGB image-based digital proxies of oil and phenol concentrations. Fruits of cultivars (×3) differing in ripening...
Autores principales: | Montanaro, Giuseppe, Petrozza, Angelo, Rustioni, Laura, Cellini, Francesco, Nuzzo, Vitale |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10289815/ https://www.ncbi.nlm.nih.gov/pubmed/37363144 http://dx.doi.org/10.34133/plantphenomics.0061 |
Ejemplares similares
-
Olive Fruit Selection through AI Algorithms and RGB Imaging
por: Figorilli, Simone, et al.
Publicado: (2022) -
Plasticity of fruit and oil traits in olive among different environments
por: Mousavi, Soraya, et al.
Publicado: (2019) -
QTL Mapping of Flowering and Fruiting Traits in Olive
por: Sadok, Inès Ben, et al.
Publicado: (2013) -
Image-Based Assessment of Drought Response in Grapevines
por: Briglia, Nunzio, et al.
Publicado: (2020) -
Correction: QTL Mapping of Flowering and Fruiting Traits in Olive
por: Sadok, Inès Ben, et al.
Publicado: (2014)