Cargando…
A Comparison of Machine Learning Models for Survival Prediction of Patients with Glioma Using Radiomic Features from MRI Scans
Background Glioma is a primary, malignant, highly aggressive brain tumor, with patients having an average life expectancy of 14 to 16 months after diagnosis. Magnetic resonance imaging (MRI) scans of these patients can be used to extract and analyze quantifiable features with potential clinical sig...
Autores principales: | Manjunath, Madhumitha, Saravanakumar, Shayana, Kiran, Shreya, Chatterjee, Jhinuk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Thieme Medical and Scientific Publishers Pvt. Ltd.
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10289839/ https://www.ncbi.nlm.nih.gov/pubmed/37362372 http://dx.doi.org/10.1055/s-0043-1767786 |
Ejemplares similares
-
Non-Invasive Prediction of Survival Time of Midline Glioma Patients Using Machine Learning on Multiparametric MRI Radiomics Features
por: Deng, Da-Biao, et al.
Publicado: (2022) -
Early prognostication of overall survival for pediatric diffuse midline gliomas using MRI radiomics and machine learning
por: Liu, Xinyang, et al.
Publicado: (2023) -
Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status
por: Sudre, Carole H., et al.
Publicado: (2020) -
An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas
por: Li, Guanzhang, et al.
Publicado: (2022) -
Overall Survival Prediction in Glioblastoma With Radiomic Features Using Machine Learning
por: Baid, Ujjwal, et al.
Publicado: (2020)