Cargando…
Diagnostic accuracy of automated ACR BI-RADS breast density classification using deep convolutional neural networks
OBJECTIVES: High breast density is a well-known risk factor for breast cancer. This study aimed to develop and adapt two (MLO, CC) deep convolutional neural networks (DCNN) for automatic breast density classification on synthetic 2D tomosynthesis reconstructions. METHODS: In total, 4605 synthetic 2D...
Autores principales: | Sexauer, Raphael, Hejduk, Patryk, Borkowski, Karol, Ruppert, Carlotta, Weikert, Thomas, Dellas, Sophie, Schmidt, Noemi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10289992/ https://www.ncbi.nlm.nih.gov/pubmed/36856841 http://dx.doi.org/10.1007/s00330-023-09474-7 |
Ejemplares similares
-
Fully automatic classification of automated breast ultrasound (ABUS) imaging according to BI-RADS using a deep convolutional neural network
por: Hejduk, Patryk, et al.
Publicado: (2022) -
Automatic and standardized quality assurance of digital mammography and tomosynthesis with deep convolutional neural networks
por: Hejduk, Patryk, et al.
Publicado: (2023) -
BI-RADS-Based Classification of Mammographic Soft Tissue Opacities Using a Deep Convolutional Neural Network
por: Sabani, Albin, et al.
Publicado: (2022) -
Detecting Abnormal Axillary Lymph Nodes on Mammograms Using a Deep Convolutional Neural Network
por: Abel, Frederik, et al.
Publicado: (2022) -
Value of the BI-RADS classification in MR-Mammography for diagnosis of benign and malignant breast tumors
por: Sohns, Christian, et al.
Publicado: (2011)