Cargando…
An automated framework for evaluation of deep learning models for splice site predictions
A novel framework for the automated evaluation of various deep learning-based splice site detectors is presented. The framework eliminates time-consuming development and experimenting activities for different codebases, architectures, and configurations to obtain the best models for a given RNA spli...
Autores principales: | Zabardast, Amin, Tamer, Elif Güney, Son, Yeşim Aydın, Yılmaz, Arif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290104/ https://www.ncbi.nlm.nih.gov/pubmed/37353532 http://dx.doi.org/10.1038/s41598-023-34795-4 |
Ejemplares similares
-
EnsembleSplice: ensemble deep learning model for splice site prediction
por: Akpokiro, Victor, et al.
Publicado: (2022) -
COSSMO: predicting competitive alternative splice site selection using deep learning
por: Bretschneider, Hannes, et al.
Publicado: (2018) -
DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins
por: Fu, Hongli, et al.
Publicado: (2019) -
The Deep Learning-Based Framework for Automated Predicting COVID-19 Severity Score
por: Zheng, Yongchang, et al.
Publicado: (2022) -
Splam: a deep-learning-based splice site predictor that improves spliced alignments
por: Chao, Kuan-Hao, et al.
Publicado: (2023)