Cargando…
Quantification of tramadol and serotonin by cobalt nickel tungstate in real biological samples to evaluate the effect of analgesic drugs on neurotransmitters
In this work, CoNiWO(4) nanocomposite was used as an electrochemical sensor for the simultaneous electrochemical detection of tramadol and serotonin. The nanocomposite was synthesized using a hydrothermal method and characterized via XRD, SEM, TGA, Zeta, UV, and FTIR. The sensor was developed by dep...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290146/ https://www.ncbi.nlm.nih.gov/pubmed/37353529 http://dx.doi.org/10.1038/s41598-023-37053-9 |
Sumario: | In this work, CoNiWO(4) nanocomposite was used as an electrochemical sensor for the simultaneous electrochemical detection of tramadol and serotonin. The nanocomposite was synthesized using a hydrothermal method and characterized via XRD, SEM, TGA, Zeta, UV, and FTIR. The sensor was developed by depositing CoNiWO(4)-NPs onto the glassy carbon electrode surface. Tramadol and serotonin were detected by employing cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and chronoamperometry. Analytes were detected at different pH, concentrations, and scan rates. The prepared sensor showed a 0–60 µM linear range, with a LOD of 0.71 µM and 4.29 µM and LOQ of 14.3 µM and 2.3 µM for serotonin and tramadol, respectively. Finally, the modified electrode (CoNiWO(4)–GCE) was applied to determine tramadol and serotonin in biological samples. |
---|