Cargando…
A new RNN based machine learning model to forecast COVID-19 incidence, enhanced by the use of mobility data from the bike-sharing service in Madrid
As a respiratory virus, COVID-19 propagates based on human-to-human interactions with positive COVID-19 cases. The temporal evolution of new COVID-19 infections depends on the existing number of COVID-19 infections and the people's mobility. This article proposes a new model to predict upcoming...
Autores principales: | Muñoz-Organero, Mario, Callejo, Patricia, Hombrados-Herrera, Miguel Ángel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290181/ https://www.ncbi.nlm.nih.gov/pubmed/37389062 http://dx.doi.org/10.1016/j.heliyon.2023.e17625 |
Ejemplares similares
-
Space-Distributed Traffic-Enhanced LSTM-Based Machine Learning Model for COVID-19 Incidence Forecasting
por: Muñoz-Organero, Mario
Publicado: (2022) -
Abstracting mobility flows from bike-sharing systems
por: Kon, Fabio, et al.
Publicado: (2021) -
Distributed forecasting and ant colony optimization for the bike-sharing rebalancing problem with unserved demands
por: Fan, Yiwei, et al.
Publicado: (2019) -
Deep Spatiotemporal Model for COVID-19 Forecasting
por: Muñoz-Organero, Mario, et al.
Publicado: (2022) -
Service network design of bike sharing systems: analysis and optimization
por: Vogel, Patrick
Publicado: (2016)