Cargando…

DataCurator.jl: efficient, portable and reproducible validation, curation and transformation of large heterogeneous datasets using human-readable recipes compiled into machine-verifiable templates

Large-scale processing of heterogeneous datasets in interdisciplinary research often requires time-consuming manual data curation. Ambiguity in the data layout and preprocessing conventions can easily compromise reproducibility and scientific discovery, and even when detected, it requires time and e...

Descripción completa

Detalles Bibliográficos
Autores principales: Cardoen, Ben, Ben Yedder, Hanene, Lee, Sieun, Nabi, Ivan Robert, Hamarneh, Ghassan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290225/
https://www.ncbi.nlm.nih.gov/pubmed/37359728
http://dx.doi.org/10.1093/bioadv/vbad068
_version_ 1785062448225583104
author Cardoen, Ben
Ben Yedder, Hanene
Lee, Sieun
Nabi, Ivan Robert
Hamarneh, Ghassan
author_facet Cardoen, Ben
Ben Yedder, Hanene
Lee, Sieun
Nabi, Ivan Robert
Hamarneh, Ghassan
author_sort Cardoen, Ben
collection PubMed
description Large-scale processing of heterogeneous datasets in interdisciplinary research often requires time-consuming manual data curation. Ambiguity in the data layout and preprocessing conventions can easily compromise reproducibility and scientific discovery, and even when detected, it requires time and effort to be corrected by domain experts. Poor data curation can also interrupt processing jobs on large computing clusters, causing frustration and delays. We introduce DataCurator, a portable software package that verifies arbitrarily complex datasets of mixed formats, working equally well on clusters as on local systems. Human-readable TOML recipes are converted into executable, machine-verifiable templates, enabling users to easily verify datasets using custom rules without writing code. Recipes can be used to transform and validate data, for pre- or post-processing, selection of data subsets, sampling and aggregation, such as summary statistics. Processing pipelines no longer need to be burdened by laborious data validation, with data curation and validation replaced by human and machine-verifiable recipes specifying rules and actions. Multithreaded execution ensures scalability on clusters, and existing Julia, R and Python libraries can be reused. DataCurator enables efficient remote workflows, offering integration with Slack and the ability to transfer curated data to clusters using OwnCloud and SCP. Code available at: https://github.com/bencardoen/DataCurator.jl.
format Online
Article
Text
id pubmed-10290225
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-102902252023-06-25 DataCurator.jl: efficient, portable and reproducible validation, curation and transformation of large heterogeneous datasets using human-readable recipes compiled into machine-verifiable templates Cardoen, Ben Ben Yedder, Hanene Lee, Sieun Nabi, Ivan Robert Hamarneh, Ghassan Bioinform Adv Application Note Large-scale processing of heterogeneous datasets in interdisciplinary research often requires time-consuming manual data curation. Ambiguity in the data layout and preprocessing conventions can easily compromise reproducibility and scientific discovery, and even when detected, it requires time and effort to be corrected by domain experts. Poor data curation can also interrupt processing jobs on large computing clusters, causing frustration and delays. We introduce DataCurator, a portable software package that verifies arbitrarily complex datasets of mixed formats, working equally well on clusters as on local systems. Human-readable TOML recipes are converted into executable, machine-verifiable templates, enabling users to easily verify datasets using custom rules without writing code. Recipes can be used to transform and validate data, for pre- or post-processing, selection of data subsets, sampling and aggregation, such as summary statistics. Processing pipelines no longer need to be burdened by laborious data validation, with data curation and validation replaced by human and machine-verifiable recipes specifying rules and actions. Multithreaded execution ensures scalability on clusters, and existing Julia, R and Python libraries can be reused. DataCurator enables efficient remote workflows, offering integration with Slack and the ability to transfer curated data to clusters using OwnCloud and SCP. Code available at: https://github.com/bencardoen/DataCurator.jl. Oxford University Press 2023-06-01 /pmc/articles/PMC10290225/ /pubmed/37359728 http://dx.doi.org/10.1093/bioadv/vbad068 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Application Note
Cardoen, Ben
Ben Yedder, Hanene
Lee, Sieun
Nabi, Ivan Robert
Hamarneh, Ghassan
DataCurator.jl: efficient, portable and reproducible validation, curation and transformation of large heterogeneous datasets using human-readable recipes compiled into machine-verifiable templates
title DataCurator.jl: efficient, portable and reproducible validation, curation and transformation of large heterogeneous datasets using human-readable recipes compiled into machine-verifiable templates
title_full DataCurator.jl: efficient, portable and reproducible validation, curation and transformation of large heterogeneous datasets using human-readable recipes compiled into machine-verifiable templates
title_fullStr DataCurator.jl: efficient, portable and reproducible validation, curation and transformation of large heterogeneous datasets using human-readable recipes compiled into machine-verifiable templates
title_full_unstemmed DataCurator.jl: efficient, portable and reproducible validation, curation and transformation of large heterogeneous datasets using human-readable recipes compiled into machine-verifiable templates
title_short DataCurator.jl: efficient, portable and reproducible validation, curation and transformation of large heterogeneous datasets using human-readable recipes compiled into machine-verifiable templates
title_sort datacurator.jl: efficient, portable and reproducible validation, curation and transformation of large heterogeneous datasets using human-readable recipes compiled into machine-verifiable templates
topic Application Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290225/
https://www.ncbi.nlm.nih.gov/pubmed/37359728
http://dx.doi.org/10.1093/bioadv/vbad068
work_keys_str_mv AT cardoenben datacuratorjlefficientportableandreproduciblevalidationcurationandtransformationoflargeheterogeneousdatasetsusinghumanreadablerecipescompiledintomachineverifiabletemplates
AT benyedderhanene datacuratorjlefficientportableandreproduciblevalidationcurationandtransformationoflargeheterogeneousdatasetsusinghumanreadablerecipescompiledintomachineverifiabletemplates
AT leesieun datacuratorjlefficientportableandreproduciblevalidationcurationandtransformationoflargeheterogeneousdatasetsusinghumanreadablerecipescompiledintomachineverifiabletemplates
AT nabiivanrobert datacuratorjlefficientportableandreproduciblevalidationcurationandtransformationoflargeheterogeneousdatasetsusinghumanreadablerecipescompiledintomachineverifiabletemplates
AT hamarnehghassan datacuratorjlefficientportableandreproduciblevalidationcurationandtransformationoflargeheterogeneousdatasetsusinghumanreadablerecipescompiledintomachineverifiabletemplates