Cargando…
SPECK: an unsupervised learning approach for cell surface receptor abundance estimation for single-cell RNA-sequencing data
SUMMARY: The rapid development of single-cell transcriptomics has revolutionized the study of complex tissues. Single-cell RNA-sequencing (scRNA-seq) can profile tens-of-thousands of dissociated cells from a tissue sample, enabling researchers to identify cell types, phenotypes and interactions that...
Autores principales: | Javaid, Azka, Frost, H Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290233/ https://www.ncbi.nlm.nih.gov/pubmed/37359727 http://dx.doi.org/10.1093/bioadv/vbad073 |
Ejemplares similares
-
STREAK: A supervised cell surface receptor abundance estimation strategy for single cell RNA-sequencing data using feature selection and thresholded gene set scoring
por: Javaid, Azka, et al.
Publicado: (2023) -
Side Channel Analysis of SPECK Based on Transfer Learning
por: Zhang, Qingqing, et al.
Publicado: (2022) -
M. Dupuytren's Treatment of Specks on the Cornea
Publicado: (1830) -
Duodenal Xanthoma: From Specks to Obstruction
por: Kolli, Sindhura, et al.
Publicado: (2019) -
Dynamics of in vivo ASC speck formation
por: Kuri, Paola, et al.
Publicado: (2017)