Cargando…
Free-fatty acid receptor-1 (FFA1/GPR40) promotes papillary RCC proliferation and tumor growth via Src/PI3K/AKT/NF-κB but suppresses migration by inhibition of EGFR, ERK1/2, STAT3 and EMT
BACKGROUND: Papillary renal cell carcinoma (pRCC) is a highly metastatic genitourinary cancer and is generally irresponsive to common treatments used for the more prevalent clear-cell (ccRCC) subtype. The goal of this study was to examine the novel role of the free fatty-acid receptor-1 (FFA1/GPR40)...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290327/ https://www.ncbi.nlm.nih.gov/pubmed/37355607 http://dx.doi.org/10.1186/s12935-023-02967-x |
_version_ | 1785062471166328832 |
---|---|
author | Karmokar, Priyanka F. Moniri, Nader H. |
author_facet | Karmokar, Priyanka F. Moniri, Nader H. |
author_sort | Karmokar, Priyanka F. |
collection | PubMed |
description | BACKGROUND: Papillary renal cell carcinoma (pRCC) is a highly metastatic genitourinary cancer and is generally irresponsive to common treatments used for the more prevalent clear-cell (ccRCC) subtype. The goal of this study was to examine the novel role of the free fatty-acid receptor-1 (FFA1/GPR40), a cell-surface expressed G protein-coupled receptor that is activated by medium-to-long chained dietary fats, in modulation of pRCC cell migration invasion, proliferation and tumor growth. METHODS: We assessed the expression of FFA1 in human pRCC and ccRCC tumor tissues compared to patient-matched non-cancerous controls, as well as in RCC cell lines. Using the selective FFA1 agonist AS2034178 and the selective FFA1 antagonist GW1100, we examined the role of FFA1 in modulating cell migration, invasion, proliferation and tumor growth and assessed the FFA1-associated intracellular signaling mechanisms via immunoblotting. RESULTS: We reveal for the first time that FFA1 is upregulated in pRCC tissue compared to patient-matched non-cancerous adjacent tissue and that its expression increases with pRCC cancer pathology, while the inverse is seen in ccRCC tissue. We also show that FFA1 is expressed in the pRCC cell line ACHN, but not in ccRCC cell lines, suggesting a unique role in pRCC pathology. Our results demonstrate that FFA1 agonism promotes tumor growth and cell proliferation via c-Src/PI3K/AKT/NF-κB and COX-2 signaling. At the same time, agonism of FFA1 strongly inhibits migration and invasion, which are mechanistically mediated via inhibition of EGFR, ERK1/2 and regulators of epithelial–mesenchymal transition. CONCLUSIONS: Our data suggest that FFA1 plays oppositional growth and migratory roles in pRCC and identifies this receptor as a potential target for modulation of pathogenesis of this aggressive cancer. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12935-023-02967-x. |
format | Online Article Text |
id | pubmed-10290327 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-102903272023-06-25 Free-fatty acid receptor-1 (FFA1/GPR40) promotes papillary RCC proliferation and tumor growth via Src/PI3K/AKT/NF-κB but suppresses migration by inhibition of EGFR, ERK1/2, STAT3 and EMT Karmokar, Priyanka F. Moniri, Nader H. Cancer Cell Int Research BACKGROUND: Papillary renal cell carcinoma (pRCC) is a highly metastatic genitourinary cancer and is generally irresponsive to common treatments used for the more prevalent clear-cell (ccRCC) subtype. The goal of this study was to examine the novel role of the free fatty-acid receptor-1 (FFA1/GPR40), a cell-surface expressed G protein-coupled receptor that is activated by medium-to-long chained dietary fats, in modulation of pRCC cell migration invasion, proliferation and tumor growth. METHODS: We assessed the expression of FFA1 in human pRCC and ccRCC tumor tissues compared to patient-matched non-cancerous controls, as well as in RCC cell lines. Using the selective FFA1 agonist AS2034178 and the selective FFA1 antagonist GW1100, we examined the role of FFA1 in modulating cell migration, invasion, proliferation and tumor growth and assessed the FFA1-associated intracellular signaling mechanisms via immunoblotting. RESULTS: We reveal for the first time that FFA1 is upregulated in pRCC tissue compared to patient-matched non-cancerous adjacent tissue and that its expression increases with pRCC cancer pathology, while the inverse is seen in ccRCC tissue. We also show that FFA1 is expressed in the pRCC cell line ACHN, but not in ccRCC cell lines, suggesting a unique role in pRCC pathology. Our results demonstrate that FFA1 agonism promotes tumor growth and cell proliferation via c-Src/PI3K/AKT/NF-κB and COX-2 signaling. At the same time, agonism of FFA1 strongly inhibits migration and invasion, which are mechanistically mediated via inhibition of EGFR, ERK1/2 and regulators of epithelial–mesenchymal transition. CONCLUSIONS: Our data suggest that FFA1 plays oppositional growth and migratory roles in pRCC and identifies this receptor as a potential target for modulation of pathogenesis of this aggressive cancer. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12935-023-02967-x. BioMed Central 2023-06-24 /pmc/articles/PMC10290327/ /pubmed/37355607 http://dx.doi.org/10.1186/s12935-023-02967-x Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Karmokar, Priyanka F. Moniri, Nader H. Free-fatty acid receptor-1 (FFA1/GPR40) promotes papillary RCC proliferation and tumor growth via Src/PI3K/AKT/NF-κB but suppresses migration by inhibition of EGFR, ERK1/2, STAT3 and EMT |
title | Free-fatty acid receptor-1 (FFA1/GPR40) promotes papillary RCC proliferation and tumor growth via Src/PI3K/AKT/NF-κB but suppresses migration by inhibition of EGFR, ERK1/2, STAT3 and EMT |
title_full | Free-fatty acid receptor-1 (FFA1/GPR40) promotes papillary RCC proliferation and tumor growth via Src/PI3K/AKT/NF-κB but suppresses migration by inhibition of EGFR, ERK1/2, STAT3 and EMT |
title_fullStr | Free-fatty acid receptor-1 (FFA1/GPR40) promotes papillary RCC proliferation and tumor growth via Src/PI3K/AKT/NF-κB but suppresses migration by inhibition of EGFR, ERK1/2, STAT3 and EMT |
title_full_unstemmed | Free-fatty acid receptor-1 (FFA1/GPR40) promotes papillary RCC proliferation and tumor growth via Src/PI3K/AKT/NF-κB but suppresses migration by inhibition of EGFR, ERK1/2, STAT3 and EMT |
title_short | Free-fatty acid receptor-1 (FFA1/GPR40) promotes papillary RCC proliferation and tumor growth via Src/PI3K/AKT/NF-κB but suppresses migration by inhibition of EGFR, ERK1/2, STAT3 and EMT |
title_sort | free-fatty acid receptor-1 (ffa1/gpr40) promotes papillary rcc proliferation and tumor growth via src/pi3k/akt/nf-κb but suppresses migration by inhibition of egfr, erk1/2, stat3 and emt |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290327/ https://www.ncbi.nlm.nih.gov/pubmed/37355607 http://dx.doi.org/10.1186/s12935-023-02967-x |
work_keys_str_mv | AT karmokarpriyankaf freefattyacidreceptor1ffa1gpr40promotespapillaryrccproliferationandtumorgrowthviasrcpi3kaktnfkbbutsuppressesmigrationbyinhibitionofegfrerk12stat3andemt AT monirinaderh freefattyacidreceptor1ffa1gpr40promotespapillaryrccproliferationandtumorgrowthviasrcpi3kaktnfkbbutsuppressesmigrationbyinhibitionofegfrerk12stat3andemt |