Cargando…
Combined electric and magnetic field therapy for bone repair and regeneration: an investigation in a 3-mm and an augmented 17-mm tibia osteotomy model in sheep
BACKGROUND: Therapies using electromagnetic field technology show evidence of enhanced bone regeneration at the fracture site, potentially preventing delayed or nonunions. METHODS: Combined electric and magnetic field (CEMF) treatment was evaluated in two standardized sheep tibia osteotomy models: a...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290367/ https://www.ncbi.nlm.nih.gov/pubmed/37355696 http://dx.doi.org/10.1186/s13018-023-03910-6 |
Sumario: | BACKGROUND: Therapies using electromagnetic field technology show evidence of enhanced bone regeneration at the fracture site, potentially preventing delayed or nonunions. METHODS: Combined electric and magnetic field (CEMF) treatment was evaluated in two standardized sheep tibia osteotomy models: a 3-mm non-critical size gap model and a 17-mm critical size defect model augmented with autologous bone grafts, both stabilized with locking compression plates. CEMF treatment was delivered across the fracture gap twice daily for 90 min, starting 4 days postoperatively (post-OP) until sacrifice (9 or 12 weeks post-OP, respectively). Control groups received no CEMF treatment. Bone healing was evaluated radiographically, morphometrically (micro-CT), biomechanically and histologically. RESULTS: In the 3-mm gap model, the CEMF group (n = 6) exhibited higher callus mineral density compared to the Control group (n = 6), two-fold higher biomechanical torsional rigidity and a histologically more advanced callus maturity (no statistically significant differences). In the 17-mm graft model, differences between the Control (n = 6) and CEMF group (n = 6) were more pronounced. The CEMF group showed a radiologically more advanced callus, a higher callus volume (p = 0.003) and a 2.6 × higher biomechanical torsional rigidity (p = 0.024), combined with a histologically more advanced callus maturity and healing. CONCLUSIONS: This study showed that CEMF therapy notably enhanced bone healing resulting in better new bone structure, callus morphology and superior biomechanical properties. This technology could transform a standard inert orthopedic implant into an active device stimulating bone tissue for accelerated healing and regeneration. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13018-023-03910-6. |
---|