Cargando…

Pulsed Radiofrequency Decreases pERK and Affects Intracellular Ca(2+) Influx, Cytosolic ATP Level, and Mitochondrial Membrane Potential in the Sensitized Dorsal Root Ganglion Neuron Induced by N-Methyl D-Aspartate [Corrigendum]

Detalles Bibliográficos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290465/
https://www.ncbi.nlm.nih.gov/pubmed/37361427
http://dx.doi.org/10.2147/JPR.S425900
_version_ 1785062503336640512
collection PubMed
description
format Online
Article
Text
id pubmed-10290465
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Dove
record_format MEDLINE/PubMed
spelling pubmed-102904652023-06-25 Pulsed Radiofrequency Decreases pERK and Affects Intracellular Ca(2+) Influx, Cytosolic ATP Level, and Mitochondrial Membrane Potential in the Sensitized Dorsal Root Ganglion Neuron Induced by N-Methyl D-Aspartate [Corrigendum] J Pain Res Corrigendum Dove 2023-06-20 /pmc/articles/PMC10290465/ /pubmed/37361427 http://dx.doi.org/10.2147/JPR.S425900 Text en © 2023 Laksono et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
spellingShingle Corrigendum
Pulsed Radiofrequency Decreases pERK and Affects Intracellular Ca(2+) Influx, Cytosolic ATP Level, and Mitochondrial Membrane Potential in the Sensitized Dorsal Root Ganglion Neuron Induced by N-Methyl D-Aspartate [Corrigendum]
title Pulsed Radiofrequency Decreases pERK and Affects Intracellular Ca(2+) Influx, Cytosolic ATP Level, and Mitochondrial Membrane Potential in the Sensitized Dorsal Root Ganglion Neuron Induced by N-Methyl D-Aspartate [Corrigendum]
title_full Pulsed Radiofrequency Decreases pERK and Affects Intracellular Ca(2+) Influx, Cytosolic ATP Level, and Mitochondrial Membrane Potential in the Sensitized Dorsal Root Ganglion Neuron Induced by N-Methyl D-Aspartate [Corrigendum]
title_fullStr Pulsed Radiofrequency Decreases pERK and Affects Intracellular Ca(2+) Influx, Cytosolic ATP Level, and Mitochondrial Membrane Potential in the Sensitized Dorsal Root Ganglion Neuron Induced by N-Methyl D-Aspartate [Corrigendum]
title_full_unstemmed Pulsed Radiofrequency Decreases pERK and Affects Intracellular Ca(2+) Influx, Cytosolic ATP Level, and Mitochondrial Membrane Potential in the Sensitized Dorsal Root Ganglion Neuron Induced by N-Methyl D-Aspartate [Corrigendum]
title_short Pulsed Radiofrequency Decreases pERK and Affects Intracellular Ca(2+) Influx, Cytosolic ATP Level, and Mitochondrial Membrane Potential in the Sensitized Dorsal Root Ganglion Neuron Induced by N-Methyl D-Aspartate [Corrigendum]
title_sort pulsed radiofrequency decreases perk and affects intracellular ca(2+) influx, cytosolic atp level, and mitochondrial membrane potential in the sensitized dorsal root ganglion neuron induced by n-methyl d-aspartate [corrigendum]
topic Corrigendum
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290465/
https://www.ncbi.nlm.nih.gov/pubmed/37361427
http://dx.doi.org/10.2147/JPR.S425900