Cargando…
The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses?
INTRODUCTION: For the analysis of clinical effects, multiple imputation (MI) of missing data were shown to be unnecessary when using longitudinal linear mixed-models (LLM). It remains unclear whether this also applies to trial-based economic evaluations. Therefore, this study aimed to assess whether...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290620/ https://www.ncbi.nlm.nih.gov/pubmed/36161553 http://dx.doi.org/10.1007/s10198-022-01525-y |
_version_ | 1785062528743636992 |
---|---|
author | Ben, Ângela Jornada van Dongen, Johanna M. Alili, Mohamed El Heymans, Martijn W. Twisk, Jos W. R. MacNeil-Vroomen, Janet L. de Wit, Maartje van Dijk, Susan E. M. Oosterhuis, Teddy Bosmans, Judith E. |
author_facet | Ben, Ângela Jornada van Dongen, Johanna M. Alili, Mohamed El Heymans, Martijn W. Twisk, Jos W. R. MacNeil-Vroomen, Janet L. de Wit, Maartje van Dijk, Susan E. M. Oosterhuis, Teddy Bosmans, Judith E. |
author_sort | Ben, Ângela Jornada |
collection | PubMed |
description | INTRODUCTION: For the analysis of clinical effects, multiple imputation (MI) of missing data were shown to be unnecessary when using longitudinal linear mixed-models (LLM). It remains unclear whether this also applies to trial-based economic evaluations. Therefore, this study aimed to assess whether MI is required prior to LLM when analyzing longitudinal cost and effect data. METHODS: Two-thousand complete datasets were simulated containing five time points. Incomplete datasets were generated with 10, 25, and 50% missing data in follow-up costs and effects, assuming a Missing At Random (MAR) mechanism. Six different strategies were compared using empirical bias (EB), root-mean-squared error (RMSE), and coverage rate (CR). These strategies were: LLM alone (LLM) and MI with LLM (MI-LLM), and, as reference strategies, mean imputation with LLM (M-LLM), seemingly unrelated regression alone (SUR-CCA), MI with SUR (MI-SUR), and mean imputation with SUR (M-SUR). RESULTS: For costs and effects, LLM, MI-LLM, and MI-SUR performed better than M-LLM, SUR-CCA, and M-SUR, with smaller EBs and RMSEs as well as CRs closers to nominal levels. However, even though LLM, MI-LLM and MI-SUR performed equally well for effects, MI-LLM and MI-SUR were found to perform better than LLM for costs at 10 and 25% missing data. At 50% missing data, all strategies resulted in relatively high EBs and RMSEs for costs. CONCLUSION: LLM should be combined with MI when analyzing trial-based economic evaluation data. MI-SUR is more efficient and can also be used, but then an average intervention effect over time cannot be estimated. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10198-022-01525-y. |
format | Online Article Text |
id | pubmed-10290620 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-102906202023-06-26 The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses? Ben, Ângela Jornada van Dongen, Johanna M. Alili, Mohamed El Heymans, Martijn W. Twisk, Jos W. R. MacNeil-Vroomen, Janet L. de Wit, Maartje van Dijk, Susan E. M. Oosterhuis, Teddy Bosmans, Judith E. Eur J Health Econ Original Paper INTRODUCTION: For the analysis of clinical effects, multiple imputation (MI) of missing data were shown to be unnecessary when using longitudinal linear mixed-models (LLM). It remains unclear whether this also applies to trial-based economic evaluations. Therefore, this study aimed to assess whether MI is required prior to LLM when analyzing longitudinal cost and effect data. METHODS: Two-thousand complete datasets were simulated containing five time points. Incomplete datasets were generated with 10, 25, and 50% missing data in follow-up costs and effects, assuming a Missing At Random (MAR) mechanism. Six different strategies were compared using empirical bias (EB), root-mean-squared error (RMSE), and coverage rate (CR). These strategies were: LLM alone (LLM) and MI with LLM (MI-LLM), and, as reference strategies, mean imputation with LLM (M-LLM), seemingly unrelated regression alone (SUR-CCA), MI with SUR (MI-SUR), and mean imputation with SUR (M-SUR). RESULTS: For costs and effects, LLM, MI-LLM, and MI-SUR performed better than M-LLM, SUR-CCA, and M-SUR, with smaller EBs and RMSEs as well as CRs closers to nominal levels. However, even though LLM, MI-LLM and MI-SUR performed equally well for effects, MI-LLM and MI-SUR were found to perform better than LLM for costs at 10 and 25% missing data. At 50% missing data, all strategies resulted in relatively high EBs and RMSEs for costs. CONCLUSION: LLM should be combined with MI when analyzing trial-based economic evaluation data. MI-SUR is more efficient and can also be used, but then an average intervention effect over time cannot be estimated. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10198-022-01525-y. Springer Berlin Heidelberg 2022-09-26 2023 /pmc/articles/PMC10290620/ /pubmed/36161553 http://dx.doi.org/10.1007/s10198-022-01525-y Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Paper Ben, Ângela Jornada van Dongen, Johanna M. Alili, Mohamed El Heymans, Martijn W. Twisk, Jos W. R. MacNeil-Vroomen, Janet L. de Wit, Maartje van Dijk, Susan E. M. Oosterhuis, Teddy Bosmans, Judith E. The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses? |
title | The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses? |
title_full | The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses? |
title_fullStr | The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses? |
title_full_unstemmed | The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses? |
title_short | The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses? |
title_sort | handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses? |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290620/ https://www.ncbi.nlm.nih.gov/pubmed/36161553 http://dx.doi.org/10.1007/s10198-022-01525-y |
work_keys_str_mv | AT benangelajornada thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses AT vandongenjohannam thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses AT alilimohamedel thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses AT heymansmartijnw thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses AT twiskjoswr thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses AT macneilvroomenjanetl thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses AT dewitmaartje thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses AT vandijksusanem thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses AT oosterhuisteddy thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses AT bosmansjudithe thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses AT benangelajornada handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses AT vandongenjohannam handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses AT alilimohamedel handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses AT heymansmartijnw handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses AT twiskjoswr handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses AT macneilvroomenjanetl handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses AT dewitmaartje handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses AT vandijksusanem handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses AT oosterhuisteddy handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses AT bosmansjudithe handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses |