Cargando…

The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses?

INTRODUCTION: For the analysis of clinical effects, multiple imputation (MI) of missing data were shown to be unnecessary when using longitudinal linear mixed-models (LLM). It remains unclear whether this also applies to trial-based economic evaluations. Therefore, this study aimed to assess whether...

Descripción completa

Detalles Bibliográficos
Autores principales: Ben, Ângela Jornada, van Dongen, Johanna M., Alili, Mohamed El, Heymans, Martijn W., Twisk, Jos W. R., MacNeil-Vroomen, Janet L., de Wit, Maartje, van Dijk, Susan E. M., Oosterhuis, Teddy, Bosmans, Judith E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290620/
https://www.ncbi.nlm.nih.gov/pubmed/36161553
http://dx.doi.org/10.1007/s10198-022-01525-y
_version_ 1785062528743636992
author Ben, Ângela Jornada
van Dongen, Johanna M.
Alili, Mohamed El
Heymans, Martijn W.
Twisk, Jos W. R.
MacNeil-Vroomen, Janet L.
de Wit, Maartje
van Dijk, Susan E. M.
Oosterhuis, Teddy
Bosmans, Judith E.
author_facet Ben, Ângela Jornada
van Dongen, Johanna M.
Alili, Mohamed El
Heymans, Martijn W.
Twisk, Jos W. R.
MacNeil-Vroomen, Janet L.
de Wit, Maartje
van Dijk, Susan E. M.
Oosterhuis, Teddy
Bosmans, Judith E.
author_sort Ben, Ângela Jornada
collection PubMed
description INTRODUCTION: For the analysis of clinical effects, multiple imputation (MI) of missing data were shown to be unnecessary when using longitudinal linear mixed-models (LLM). It remains unclear whether this also applies to trial-based economic evaluations. Therefore, this study aimed to assess whether MI is required prior to LLM when analyzing longitudinal cost and effect data. METHODS: Two-thousand complete datasets were simulated containing five time points. Incomplete datasets were generated with 10, 25, and 50% missing data in follow-up costs and effects, assuming a Missing At Random (MAR) mechanism. Six different strategies were compared using empirical bias (EB), root-mean-squared error (RMSE), and coverage rate (CR). These strategies were: LLM alone (LLM) and MI with LLM (MI-LLM), and, as reference strategies, mean imputation with LLM (M-LLM), seemingly unrelated regression alone (SUR-CCA), MI with SUR (MI-SUR), and mean imputation with SUR (M-SUR). RESULTS: For costs and effects, LLM, MI-LLM, and MI-SUR performed better than M-LLM, SUR-CCA, and M-SUR, with smaller EBs and RMSEs as well as CRs closers to nominal levels. However, even though LLM, MI-LLM and MI-SUR performed equally well for effects, MI-LLM and MI-SUR were found to perform better than LLM for costs at 10 and 25% missing data. At 50% missing data, all strategies resulted in relatively high EBs and RMSEs for costs. CONCLUSION: LLM should be combined with MI when analyzing trial-based economic evaluation data. MI-SUR is more efficient and can also be used, but then an average intervention effect over time cannot be estimated. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10198-022-01525-y.
format Online
Article
Text
id pubmed-10290620
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-102906202023-06-26 The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses? Ben, Ângela Jornada van Dongen, Johanna M. Alili, Mohamed El Heymans, Martijn W. Twisk, Jos W. R. MacNeil-Vroomen, Janet L. de Wit, Maartje van Dijk, Susan E. M. Oosterhuis, Teddy Bosmans, Judith E. Eur J Health Econ Original Paper INTRODUCTION: For the analysis of clinical effects, multiple imputation (MI) of missing data were shown to be unnecessary when using longitudinal linear mixed-models (LLM). It remains unclear whether this also applies to trial-based economic evaluations. Therefore, this study aimed to assess whether MI is required prior to LLM when analyzing longitudinal cost and effect data. METHODS: Two-thousand complete datasets were simulated containing five time points. Incomplete datasets were generated with 10, 25, and 50% missing data in follow-up costs and effects, assuming a Missing At Random (MAR) mechanism. Six different strategies were compared using empirical bias (EB), root-mean-squared error (RMSE), and coverage rate (CR). These strategies were: LLM alone (LLM) and MI with LLM (MI-LLM), and, as reference strategies, mean imputation with LLM (M-LLM), seemingly unrelated regression alone (SUR-CCA), MI with SUR (MI-SUR), and mean imputation with SUR (M-SUR). RESULTS: For costs and effects, LLM, MI-LLM, and MI-SUR performed better than M-LLM, SUR-CCA, and M-SUR, with smaller EBs and RMSEs as well as CRs closers to nominal levels. However, even though LLM, MI-LLM and MI-SUR performed equally well for effects, MI-LLM and MI-SUR were found to perform better than LLM for costs at 10 and 25% missing data. At 50% missing data, all strategies resulted in relatively high EBs and RMSEs for costs. CONCLUSION: LLM should be combined with MI when analyzing trial-based economic evaluation data. MI-SUR is more efficient and can also be used, but then an average intervention effect over time cannot be estimated. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10198-022-01525-y. Springer Berlin Heidelberg 2022-09-26 2023 /pmc/articles/PMC10290620/ /pubmed/36161553 http://dx.doi.org/10.1007/s10198-022-01525-y Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Original Paper
Ben, Ângela Jornada
van Dongen, Johanna M.
Alili, Mohamed El
Heymans, Martijn W.
Twisk, Jos W. R.
MacNeil-Vroomen, Janet L.
de Wit, Maartje
van Dijk, Susan E. M.
Oosterhuis, Teddy
Bosmans, Judith E.
The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses?
title The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses?
title_full The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses?
title_fullStr The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses?
title_full_unstemmed The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses?
title_short The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses?
title_sort handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses?
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290620/
https://www.ncbi.nlm.nih.gov/pubmed/36161553
http://dx.doi.org/10.1007/s10198-022-01525-y
work_keys_str_mv AT benangelajornada thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses
AT vandongenjohannam thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses
AT alilimohamedel thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses
AT heymansmartijnw thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses
AT twiskjoswr thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses
AT macneilvroomenjanetl thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses
AT dewitmaartje thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses
AT vandijksusanem thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses
AT oosterhuisteddy thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses
AT bosmansjudithe thehandlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses
AT benangelajornada handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses
AT vandongenjohannam handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses
AT alilimohamedel handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses
AT heymansmartijnw handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses
AT twiskjoswr handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses
AT macneilvroomenjanetl handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses
AT dewitmaartje handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses
AT vandijksusanem handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses
AT oosterhuisteddy handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses
AT bosmansjudithe handlingofmissingdataintrialbasedeconomicevaluationsshoulddatabemultiplyimputedpriortolongitudinallinearmixedmodelanalyses