Cargando…
Differentially private knowledge transfer for federated learning
Extracting useful knowledge from big data is important for machine learning. When data is privacy-sensitive and cannot be directly collected, federated learning is a promising option that extracts knowledge from decentralized data by learning and exchanging model parameters, rather than raw data. Ho...
Autores principales: | Qi, Tao, Wu, Fangzhao, Wu, Chuhan, He, Liang, Huang, Yongfeng, Xie, Xing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290720/ https://www.ncbi.nlm.nih.gov/pubmed/37355643 http://dx.doi.org/10.1038/s41467-023-38794-x |
Ejemplares similares
-
Communication-efficient federated learning via knowledge distillation
por: Wu, Chuhan, et al.
Publicado: (2022) -
A federated graph neural network framework for privacy-preserving personalization
por: Wu, Chuhan, et al.
Publicado: (2022) -
A federated learning framework based on transfer learning and knowledge distillation for targeted advertising
por: Su, Caiyu, et al.
Publicado: (2023) -
Recover User’s Private Training Image Data by Gradient in Federated Learning
por: Gong, Haimei, et al.
Publicado: (2022) -
FedDPGAN: Federated Differentially Private Generative Adversarial Networks Framework for the Detection of COVID-19 Pneumonia
por: Zhang, Longling, et al.
Publicado: (2021)