Cargando…
Gene regulatory network inference based on a nonhomogeneous dynamic Bayesian network model with an improved Markov Monte Carlo sampling
A nonhomogeneous dynamic Bayesian network model, which combines the dynamic Bayesian network and the multi-change point process, solves the limitations of the dynamic Bayesian network in modeling non-stationary gene expression data to a certain extent. However, certain problems persist, such as the...
Autores principales: | Zhang, Jiayao, Hu, Chunling, Zhang, Qianqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290802/ https://www.ncbi.nlm.nih.gov/pubmed/37355560 http://dx.doi.org/10.1186/s12859-023-05381-2 |
Ejemplares similares
-
Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference
por: Gamerman, Dani, et al.
Publicado: (2006) -
On the inference of complex phylogenetic networks by Markov Chain Monte-Carlo
por: Rabier, Charles-Elie, et al.
Publicado: (2021) -
Bayesian Genome Assembly and Assessment by Markov Chain Monte Carlo Sampling
por: Howison, Mark, et al.
Publicado: (2014) -
Cascade source inference in networks: a Markov chain Monte Carlo approach
por: Zhai, Xuming, et al.
Publicado: (2015) -
Correction: Bayesian Genome Assembly and Assessment by Markov Chain Monte Carlo Sampling
Publicado: (2014)