Cargando…
Feasibility study on the application of a spiking neural network in myoelectric control systems
In recent years, the effectiveness of a spiking neural network (SNN) for Electromyography (EMG) pattern recognition has been validated, but there is a lack of comprehensive consideration of the problems of heavy training burden, poor robustness, and high energy consumption in the application of actu...
Autores principales: | Sun, Antong, Chen, Xiang, Xu, Mengjuan, Zhang, Xu, Chen, Xun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10291076/ https://www.ncbi.nlm.nih.gov/pubmed/37378016 http://dx.doi.org/10.3389/fnins.2023.1174760 |
Ejemplares similares
-
Rejecting Novel Motions in High-Density Myoelectric Pattern Recognition Using Hybrid Neural Networks
por: Wu, Le, et al.
Publicado: (2022) -
Recalibration of myoelectric control with active learning
por: Szymaniak, Katarzyna, et al.
Publicado: (2022) -
Emotional brain network decoded by biological spiking neural network
por: Xu, Hubo, et al.
Publicado: (2023) -
Neuronal-Plasticity and Reward-Propagation Improved Recurrent Spiking Neural Networks
por: Jia, Shuncheng, et al.
Publicado: (2021) -
Constructing an Associative Memory System Using Spiking Neural Network
por: He, Hu, et al.
Publicado: (2019)