Cargando…

Imperfect ant mimicry contributes to local adaptation in a jumping spider

Putative ant mimicry is a remarkable example of an evolutionary strategy that can be well integrated into the framework of natural selection and adaptation. However, challenges remain in understanding imperfect ant mimicry. Here, we combine trait quantification and behavioral assays to investigate i...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeng, Hua, Zhao, Dong, Zhang, Zixuan, Gao, Huize, Zhang, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10291251/
https://www.ncbi.nlm.nih.gov/pubmed/37378345
http://dx.doi.org/10.1016/j.isci.2023.106747
Descripción
Sumario:Putative ant mimicry is a remarkable example of an evolutionary strategy that can be well integrated into the framework of natural selection and adaptation. However, challenges remain in understanding imperfect ant mimicry. Here, we combine trait quantification and behavioral assays to investigate imperfect ant mimicry in the jumping spider Siler collingwoodi. We performed trajectory analysis and gait analysis to show that the locomotor characters of S. collingwoodi generally resemble those of the putative ant models, supporting the multiple models hypothesis. We then performed background-matching analysis, revealing that body coloration may be involved in background camouflage. We further carried out antipredation assays and found that S. collingwoodi had a significantly lower risk of predation than nonmimetic salticids, suggesting an overall protective effect of Batesian mimicry. Our findings quantitatively demonstrate a combination of mimicry and camouflage in S. collingwoodi and thus highlight the significance of a complex phenomenon driven by natural selection.