Cargando…
A dual paper-based nucleic acid extraction method from blood in under ten minutes for point-of-care diagnostics
Nucleic acid extraction (NAE) plays a crucial role for diagnostic testing procedures. For decades, dried blood spots (DBS) have been used for serology, drug monitoring, and molecular studies. However, extracting nucleic acids from DBS remains a significant challenge, especially when attempting to im...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10291277/ https://www.ncbi.nlm.nih.gov/pubmed/37265396 http://dx.doi.org/10.1039/d3an00296a |
_version_ | 1785062660057858048 |
---|---|
author | Malpartida-Cardenas, Kenny Baum, Jake Cunnington, Aubrey Georgiou, Pantelis Rodriguez-Manzano, Jesus |
author_facet | Malpartida-Cardenas, Kenny Baum, Jake Cunnington, Aubrey Georgiou, Pantelis Rodriguez-Manzano, Jesus |
author_sort | Malpartida-Cardenas, Kenny |
collection | PubMed |
description | Nucleic acid extraction (NAE) plays a crucial role for diagnostic testing procedures. For decades, dried blood spots (DBS) have been used for serology, drug monitoring, and molecular studies. However, extracting nucleic acids from DBS remains a significant challenge, especially when attempting to implement these applications to the point-of-care (POC). To address this issue, we have developed a paper-based NAE method using cellulose filter papers (DBSFP) that operates without the need for electricity (at room temperature). Our method allows for NAE in less than 7 min, and it involves grade 3 filter paper pre-treated with 8% (v/v) igepal surfactant, 1 min washing step with 1× PBS, and 5 min incubation at room temperature in 1× TE buffer. The performance of the methodology was assessed with loop-mediated isothermal amplification (LAMP), targeting the human reference gene beta-actin and the kelch 13 gene from P. falciparum. The developed method was evaluated against FTA cards and magnetic bead-based purification, using time-to-positive (min) for comparative analysis. Furthermore, we optimised our approach to take advantage of the dual functionality of the paper-based extraction, allowing for elution (eluted disk) as well as direct placement of the disk in the LAMP reaction (in situ disk). This flexibility extends to eukaryotic cells, bacterial cells, and viral particles. We successfully validated the method for RNA/DNA detection and demonstrated its compatibility with whole blood stored in anticoagulants. Additionally, we studied the compatibility of DBSFP with colorimetric and lateral flow detection, showcasing its potential for POC applications. Across various tested matrices, targets, and experimental conditions, our results were comparable to those obtained using gold standard methods, highlighting the versatility of our methodology. In summary, this manuscript presents a cost-effective solution for NAE from DBS, enabling molecular testing in virtually any POC setting. When combined with LAMP, our approach provides sample-to-result detection in under 35 minutes. |
format | Online Article Text |
id | pubmed-10291277 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-102912772023-06-27 A dual paper-based nucleic acid extraction method from blood in under ten minutes for point-of-care diagnostics Malpartida-Cardenas, Kenny Baum, Jake Cunnington, Aubrey Georgiou, Pantelis Rodriguez-Manzano, Jesus Analyst Chemistry Nucleic acid extraction (NAE) plays a crucial role for diagnostic testing procedures. For decades, dried blood spots (DBS) have been used for serology, drug monitoring, and molecular studies. However, extracting nucleic acids from DBS remains a significant challenge, especially when attempting to implement these applications to the point-of-care (POC). To address this issue, we have developed a paper-based NAE method using cellulose filter papers (DBSFP) that operates without the need for electricity (at room temperature). Our method allows for NAE in less than 7 min, and it involves grade 3 filter paper pre-treated with 8% (v/v) igepal surfactant, 1 min washing step with 1× PBS, and 5 min incubation at room temperature in 1× TE buffer. The performance of the methodology was assessed with loop-mediated isothermal amplification (LAMP), targeting the human reference gene beta-actin and the kelch 13 gene from P. falciparum. The developed method was evaluated against FTA cards and magnetic bead-based purification, using time-to-positive (min) for comparative analysis. Furthermore, we optimised our approach to take advantage of the dual functionality of the paper-based extraction, allowing for elution (eluted disk) as well as direct placement of the disk in the LAMP reaction (in situ disk). This flexibility extends to eukaryotic cells, bacterial cells, and viral particles. We successfully validated the method for RNA/DNA detection and demonstrated its compatibility with whole blood stored in anticoagulants. Additionally, we studied the compatibility of DBSFP with colorimetric and lateral flow detection, showcasing its potential for POC applications. Across various tested matrices, targets, and experimental conditions, our results were comparable to those obtained using gold standard methods, highlighting the versatility of our methodology. In summary, this manuscript presents a cost-effective solution for NAE from DBS, enabling molecular testing in virtually any POC setting. When combined with LAMP, our approach provides sample-to-result detection in under 35 minutes. The Royal Society of Chemistry 2023-06-02 /pmc/articles/PMC10291277/ /pubmed/37265396 http://dx.doi.org/10.1039/d3an00296a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Malpartida-Cardenas, Kenny Baum, Jake Cunnington, Aubrey Georgiou, Pantelis Rodriguez-Manzano, Jesus A dual paper-based nucleic acid extraction method from blood in under ten minutes for point-of-care diagnostics |
title | A dual paper-based nucleic acid extraction method from blood in under ten minutes for point-of-care diagnostics |
title_full | A dual paper-based nucleic acid extraction method from blood in under ten minutes for point-of-care diagnostics |
title_fullStr | A dual paper-based nucleic acid extraction method from blood in under ten minutes for point-of-care diagnostics |
title_full_unstemmed | A dual paper-based nucleic acid extraction method from blood in under ten minutes for point-of-care diagnostics |
title_short | A dual paper-based nucleic acid extraction method from blood in under ten minutes for point-of-care diagnostics |
title_sort | dual paper-based nucleic acid extraction method from blood in under ten minutes for point-of-care diagnostics |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10291277/ https://www.ncbi.nlm.nih.gov/pubmed/37265396 http://dx.doi.org/10.1039/d3an00296a |
work_keys_str_mv | AT malpartidacardenaskenny adualpaperbasednucleicacidextractionmethodfrombloodinundertenminutesforpointofcarediagnostics AT baumjake adualpaperbasednucleicacidextractionmethodfrombloodinundertenminutesforpointofcarediagnostics AT cunningtonaubrey adualpaperbasednucleicacidextractionmethodfrombloodinundertenminutesforpointofcarediagnostics AT georgioupantelis adualpaperbasednucleicacidextractionmethodfrombloodinundertenminutesforpointofcarediagnostics AT rodriguezmanzanojesus adualpaperbasednucleicacidextractionmethodfrombloodinundertenminutesforpointofcarediagnostics AT malpartidacardenaskenny dualpaperbasednucleicacidextractionmethodfrombloodinundertenminutesforpointofcarediagnostics AT baumjake dualpaperbasednucleicacidextractionmethodfrombloodinundertenminutesforpointofcarediagnostics AT cunningtonaubrey dualpaperbasednucleicacidextractionmethodfrombloodinundertenminutesforpointofcarediagnostics AT georgioupantelis dualpaperbasednucleicacidextractionmethodfrombloodinundertenminutesforpointofcarediagnostics AT rodriguezmanzanojesus dualpaperbasednucleicacidextractionmethodfrombloodinundertenminutesforpointofcarediagnostics |