Cargando…
Zero-shot style transfer for gesture animation driven by text and speech using adversarial disentanglement of multimodal style encoding
Modeling virtual agents with behavior style is one factor for personalizing human-agent interaction. We propose an efficient yet effective machine learning approach to synthesize gestures driven by prosodic features and text in the style of different speakers including those unseen during training....
Autores principales: | Fares, Mireille, Pelachaud, Catherine, Obin, Nicolas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10291316/ https://www.ncbi.nlm.nih.gov/pubmed/37377638 http://dx.doi.org/10.3389/frai.2023.1142997 |
Ejemplares similares
-
The unreasonable effectiveness of large language models in zero-shot semantic annotation of legal texts
por: Savelka, Jaromir, et al.
Publicado: (2023) -
Zero-shot stance detection: Paradigms and challenges
por: Allaway, Emily, et al.
Publicado: (2023) -
Semantic-visual shared knowledge graph for zero-shot learning
por: Yu, Beibei, et al.
Publicado: (2023) -
Generative adversarial network based adaptive data augmentation for handwritten Arabic text recognition
por: Eltay, Mohamed, et al.
Publicado: (2022) -
CycleStyleGAN-Based Knowledge Transfer for a Machining Digital Twin
por: Zotov, Evgeny, et al.
Publicado: (2021)