Cargando…
De Novo Design of Nurr1 Agonists via Fragment-Augmented Generative Deep Learning in Low-Data Regime
[Image: see text] Generative neural networks trained on SMILES can design innovative bioactive molecules de novo. These so-called chemical language models (CLMs) have typically been trained on tens of template molecules for fine-tuning. However, it is challenging to apply CLM to orphan targets with...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10291550/ https://www.ncbi.nlm.nih.gov/pubmed/37256819 http://dx.doi.org/10.1021/acs.jmedchem.3c00485 |
Sumario: | [Image: see text] Generative neural networks trained on SMILES can design innovative bioactive molecules de novo. These so-called chemical language models (CLMs) have typically been trained on tens of template molecules for fine-tuning. However, it is challenging to apply CLM to orphan targets with few known ligands. We have fine-tuned a CLM with a single potent Nurr1 agonist as template in a fragment-augmented fashion and obtained novel Nurr1 agonists using sampling frequency for design prioritization. Nanomolar potency and binding affinity of the top-ranking design and its structural novelty compared to available Nurr1 ligands highlight its value as an early chemical tool and as a lead for Nurr1 agonist development, as well as the applicability of CLM in very low-data scenarios. |
---|