Cargando…
De Novo Design of Nurr1 Agonists via Fragment-Augmented Generative Deep Learning in Low-Data Regime
[Image: see text] Generative neural networks trained on SMILES can design innovative bioactive molecules de novo. These so-called chemical language models (CLMs) have typically been trained on tens of template molecules for fine-tuning. However, it is challenging to apply CLM to orphan targets with...
Autores principales: | Ballarotto, Marco, Willems, Sabine, Stiller, Tanja, Nawa, Felix, Marschner, Julian A., Grisoni, Francesca, Merk, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10291550/ https://www.ncbi.nlm.nih.gov/pubmed/37256819 http://dx.doi.org/10.1021/acs.jmedchem.3c00485 |
Ejemplares similares
-
Development
of a Potent Nurr1 Agonist Tool for In
Vivo Applications
por: Vietor, Jan, et al.
Publicado: (2023) -
Nurr1 Modulation Mediates Neuroprotective Effects of Statins
por: Willems, Sabine, et al.
Publicado: (2022) -
Structure-Guided
Design of Nurr1 Agonists Derived
from the Natural Ligand Dihydroxyindole
por: Sai, Minh, et al.
Publicado: (2023) -
Scaffold Hopping from Amodiaquine to Novel Nurr1 Agonist Chemotypes via Microscale Analogue Libraries
por: Willems, Sabine, et al.
Publicado: (2022) -
The orphan nuclear receptor Nurr1 is responsive to non-steroidal anti-inflammatory drugs
por: Willems, Sabine, et al.
Publicado: (2020)