Cargando…

Development of complemented comprehensive networks for rapid screening of repurposable drugs applicable to new emerging disease outbreaks

BACKGROUND: Computational drug repurposing is crucial for identifying candidate therapeutic medications to address the urgent need for developing treatments for newly emerging infectious diseases. The recent COVID-19 pandemic has taught us the importance of rapidly discovering candidate drugs and pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Nam, Yonghyun, Lucas, Anastasia, Yun, Jae-Seung, Lee, Seung Mi, Park, Ji Won, Chen, Ziqi, Lee, Brian, Ning, Xia, Shen, Li, Verma, Anurag, Kim, Dokyoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10291757/
https://www.ncbi.nlm.nih.gov/pubmed/37365631
http://dx.doi.org/10.1186/s12967-023-04223-2
Descripción
Sumario:BACKGROUND: Computational drug repurposing is crucial for identifying candidate therapeutic medications to address the urgent need for developing treatments for newly emerging infectious diseases. The recent COVID-19 pandemic has taught us the importance of rapidly discovering candidate drugs and providing them to medical and pharmaceutical experts for further investigation. Network-based approaches can provide repurposable drugs quickly by leveraging comprehensive relationships among biological components. However, in a case of newly emerging disease, applying a repurposing methods with only pre-existing knowledge networks may prove inadequate due to the insufficiency of information flow caused by the novel nature of the disease. METHODS: We proposed a network-based complementary linkage method for drug repurposing to solve the lack of incoming new disease-specific information in knowledge networks. We simulate our method under the controlled repurposing scenario that we faced in the early stage of the COVID-19 pandemic. First, the disease-gene-drug multi-layered network was constructed as the backbone network by fusing comprehensive knowledge database. Then, complementary information for COVID-19, containing data on 18 comorbid diseases and 17 relevant proteins, was collected from publications or preprint servers as of May 2020. We estimated connections between the novel COVID-19 node and the backbone network to construct a complemented network. Network-based drug scoring for COVID-19 was performed by applying graph-based semi-supervised learning, and the resulting scores were used to validate prioritized drugs for population-scale electronic health records-based medication analyses. RESULTS: The backbone networks consisted of 591 diseases, 26,681 proteins, and 2,173 drug nodes based on pre-pandemic knowledge. After incorporating the 35 entities comprised of complemented information into the backbone network, drug scoring screened top 30 potential repurposable drugs for COVID-19. The prioritized drugs were subsequently analyzed in electronic health records obtained from patients in the Penn Medicine COVID-19 Registry as of October 2021 and 8 of these were found to be statistically associated with a COVID-19 phenotype. CONCLUSION: We found that 8 of the 30 drugs identified by graph-based scoring on complemented networks as potential candidates for COVID-19 repurposing were additionally supported by real-world patient data in follow-up analyses. These results show that our network-based complementary linkage method and drug scoring algorithm are promising strategies for identifying candidate repurposable drugs when new emerging disease outbreaks. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-023-04223-2.