Cargando…
Applying an interpretable machine learning framework to study mobility inequity in the recovery phase of COVID-19 pandemic
The COVID-19 pandemic is a public health crisis that also fuels the pervasive social inequity in the United States. Existing studies have extensively analyzed the inequity issues on mobility across different demographic groups during the lockdown phase. However, it is unclear whether the mobility in...
Autores principales: | Li, Zihao, Wei, Zihang, Zhang, Yunlong, Kong, Xiaoqiang, Ma, Chaolun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hong Kong Society for Transportation Studies. Published by Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10291880/ https://www.ncbi.nlm.nih.gov/pubmed/37389404 http://dx.doi.org/10.1016/j.tbs.2023.100621 |
Ejemplares similares
-
R.ROSETTA: an interpretable machine learning framework
por: Garbulowski, Mateusz, et al.
Publicado: (2021) -
Unsupervised Machine Learning Applied to Seismic Interpretation: Towards an Unsupervised Automated Interpretation Tool
por: Celecia, Alimed, et al.
Publicado: (2021) -
An interpretable machine learning framework for diagnosis and prognosis of COVID-19
por: Fan, Yongxian, et al.
Publicado: (2023) -
A framework for vehicle quality evaluation based on interpretable machine learning
por: Alwadi, Mohammad, et al.
Publicado: (2022) -
An introduction to machine learning interpretability: an applied perspective on fairness, accountability, transparency, and explainable AI
por: Hall, Patrick, et al.
Publicado: (2019)