Cargando…
Biomes of the world under climate change scenarios: increasing aridity and higher temperatures lead to significant shifts in natural vegetation
The global potential distribution of biomes (natural vegetation) was modelled using 8,959 training points from the BIOME 6000 dataset and a stack of 72 environmental covariates representing terrain and the current climatic conditions based on historical long term averages (1979–2013). An ensemble ma...
Autores principales: | Bonannella, Carmelo, Hengl, Tomislav, Parente, Leandro, de Bruin, Sytze |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10292195/ https://www.ncbi.nlm.nih.gov/pubmed/37377791 http://dx.doi.org/10.7717/peerj.15593 |
Ejemplares similares
-
Forest tree species distribution for Europe 2000–2020: mapping potential and realized distributions using spatiotemporal machine learning
por: Bonannella, Carmelo, et al.
Publicado: (2022) -
Global mapping of potential natural vegetation: an assessment of machine learning algorithms for estimating land potential
por: Hengl, Tomislav, et al.
Publicado: (2018) -
The aridity index governs the variation of vegetation characteristics in alpine grassland, Northern Tibet Plateau
por: Liu, Biying, et al.
Publicado: (2019) -
Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables
por: Hengl, Tomislav, et al.
Publicado: (2018) -
The potential habitat of desert locusts is contracting: predictions under climate change scenarios
por: Guan, Jingyun, et al.
Publicado: (2021)