Cargando…
Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics
Data-independent acquisition (DIA) technology for protein identification from mass spectrometry and related algorithms is developing rapidly. The spectrum-centric analysis of DIA data without the use of spectra library from data-dependent acquisition data represents a promising direction. In this pa...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10292580/ https://www.ncbi.nlm.nih.gov/pubmed/37377457 http://dx.doi.org/10.34133/research.0179 |
_version_ | 1785062845513203712 |
---|---|
author | He, Qingzu Zhong, Chuan-Qi Li, Xiang Guo, Huan Li, Yiming Gao, Mingxuan Yu, Rongshan Liu, Xianming Zhang, Fangfei Guo, Donghui Ye, Fangfu Guo, Tiannan Shuai, Jianwei Han, Jiahuai |
author_facet | He, Qingzu Zhong, Chuan-Qi Li, Xiang Guo, Huan Li, Yiming Gao, Mingxuan Yu, Rongshan Liu, Xianming Zhang, Fangfei Guo, Donghui Ye, Fangfu Guo, Tiannan Shuai, Jianwei Han, Jiahuai |
author_sort | He, Qingzu |
collection | PubMed |
description | Data-independent acquisition (DIA) technology for protein identification from mass spectrometry and related algorithms is developing rapidly. The spectrum-centric analysis of DIA data without the use of spectra library from data-dependent acquisition data represents a promising direction. In this paper, we proposed an untargeted analysis method, Dear-DIA(XMBD), for direct analysis of DIA data. Dear-DIA(XMBD) first integrates the deep variational autoencoder and triplet loss to learn the representations of the extracted fragment ion chromatograms, then uses the k-means clustering algorithm to aggregate fragments with similar representations into the same classes, and finally establishes the inverted index tables to determine the precursors of fragment clusters between precursors and peptides and between fragments and peptides. We show that Dear-DIA(XMBD) performs superiorly with the highly complicated DIA data of different species obtained by different instrument platforms. Dear-DIA(XMBD) is publicly available at https://github.com/jianweishuai/Dear-DIA-XMBD. |
format | Online Article Text |
id | pubmed-10292580 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | AAAS |
record_format | MEDLINE/PubMed |
spelling | pubmed-102925802023-06-27 Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics He, Qingzu Zhong, Chuan-Qi Li, Xiang Guo, Huan Li, Yiming Gao, Mingxuan Yu, Rongshan Liu, Xianming Zhang, Fangfei Guo, Donghui Ye, Fangfu Guo, Tiannan Shuai, Jianwei Han, Jiahuai Research (Wash D C) Research Article Data-independent acquisition (DIA) technology for protein identification from mass spectrometry and related algorithms is developing rapidly. The spectrum-centric analysis of DIA data without the use of spectra library from data-dependent acquisition data represents a promising direction. In this paper, we proposed an untargeted analysis method, Dear-DIA(XMBD), for direct analysis of DIA data. Dear-DIA(XMBD) first integrates the deep variational autoencoder and triplet loss to learn the representations of the extracted fragment ion chromatograms, then uses the k-means clustering algorithm to aggregate fragments with similar representations into the same classes, and finally establishes the inverted index tables to determine the precursors of fragment clusters between precursors and peptides and between fragments and peptides. We show that Dear-DIA(XMBD) performs superiorly with the highly complicated DIA data of different species obtained by different instrument platforms. Dear-DIA(XMBD) is publicly available at https://github.com/jianweishuai/Dear-DIA-XMBD. AAAS 2023-06-26 /pmc/articles/PMC10292580/ /pubmed/37377457 http://dx.doi.org/10.34133/research.0179 Text en Copyright © 2023 Qingzu He et al. https://creativecommons.org/licenses/by/4.0/Exclusive licensee Science and Technology Review Publishing House. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article He, Qingzu Zhong, Chuan-Qi Li, Xiang Guo, Huan Li, Yiming Gao, Mingxuan Yu, Rongshan Liu, Xianming Zhang, Fangfei Guo, Donghui Ye, Fangfu Guo, Tiannan Shuai, Jianwei Han, Jiahuai Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics |
title | Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics |
title_full | Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics |
title_fullStr | Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics |
title_full_unstemmed | Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics |
title_short | Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics |
title_sort | dear-dia(xmbd): deep autoencoder enables deconvolution of data-independent acquisition proteomics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10292580/ https://www.ncbi.nlm.nih.gov/pubmed/37377457 http://dx.doi.org/10.34133/research.0179 |
work_keys_str_mv | AT heqingzu deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics AT zhongchuanqi deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics AT lixiang deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics AT guohuan deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics AT liyiming deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics AT gaomingxuan deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics AT yurongshan deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics AT liuxianming deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics AT zhangfangfei deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics AT guodonghui deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics AT yefangfu deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics AT guotiannan deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics AT shuaijianwei deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics AT hanjiahuai deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics |