Cargando…

Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics

Data-independent acquisition (DIA) technology for protein identification from mass spectrometry and related algorithms is developing rapidly. The spectrum-centric analysis of DIA data without the use of spectra library from data-dependent acquisition data represents a promising direction. In this pa...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Qingzu, Zhong, Chuan-Qi, Li, Xiang, Guo, Huan, Li, Yiming, Gao, Mingxuan, Yu, Rongshan, Liu, Xianming, Zhang, Fangfei, Guo, Donghui, Ye, Fangfu, Guo, Tiannan, Shuai, Jianwei, Han, Jiahuai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10292580/
https://www.ncbi.nlm.nih.gov/pubmed/37377457
http://dx.doi.org/10.34133/research.0179
_version_ 1785062845513203712
author He, Qingzu
Zhong, Chuan-Qi
Li, Xiang
Guo, Huan
Li, Yiming
Gao, Mingxuan
Yu, Rongshan
Liu, Xianming
Zhang, Fangfei
Guo, Donghui
Ye, Fangfu
Guo, Tiannan
Shuai, Jianwei
Han, Jiahuai
author_facet He, Qingzu
Zhong, Chuan-Qi
Li, Xiang
Guo, Huan
Li, Yiming
Gao, Mingxuan
Yu, Rongshan
Liu, Xianming
Zhang, Fangfei
Guo, Donghui
Ye, Fangfu
Guo, Tiannan
Shuai, Jianwei
Han, Jiahuai
author_sort He, Qingzu
collection PubMed
description Data-independent acquisition (DIA) technology for protein identification from mass spectrometry and related algorithms is developing rapidly. The spectrum-centric analysis of DIA data without the use of spectra library from data-dependent acquisition data represents a promising direction. In this paper, we proposed an untargeted analysis method, Dear-DIA(XMBD), for direct analysis of DIA data. Dear-DIA(XMBD) first integrates the deep variational autoencoder and triplet loss to learn the representations of the extracted fragment ion chromatograms, then uses the k-means clustering algorithm to aggregate fragments with similar representations into the same classes, and finally establishes the inverted index tables to determine the precursors of fragment clusters between precursors and peptides and between fragments and peptides. We show that Dear-DIA(XMBD) performs superiorly with the highly complicated DIA data of different species obtained by different instrument platforms. Dear-DIA(XMBD) is publicly available at https://github.com/jianweishuai/Dear-DIA-XMBD.
format Online
Article
Text
id pubmed-10292580
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher AAAS
record_format MEDLINE/PubMed
spelling pubmed-102925802023-06-27 Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics He, Qingzu Zhong, Chuan-Qi Li, Xiang Guo, Huan Li, Yiming Gao, Mingxuan Yu, Rongshan Liu, Xianming Zhang, Fangfei Guo, Donghui Ye, Fangfu Guo, Tiannan Shuai, Jianwei Han, Jiahuai Research (Wash D C) Research Article Data-independent acquisition (DIA) technology for protein identification from mass spectrometry and related algorithms is developing rapidly. The spectrum-centric analysis of DIA data without the use of spectra library from data-dependent acquisition data represents a promising direction. In this paper, we proposed an untargeted analysis method, Dear-DIA(XMBD), for direct analysis of DIA data. Dear-DIA(XMBD) first integrates the deep variational autoencoder and triplet loss to learn the representations of the extracted fragment ion chromatograms, then uses the k-means clustering algorithm to aggregate fragments with similar representations into the same classes, and finally establishes the inverted index tables to determine the precursors of fragment clusters between precursors and peptides and between fragments and peptides. We show that Dear-DIA(XMBD) performs superiorly with the highly complicated DIA data of different species obtained by different instrument platforms. Dear-DIA(XMBD) is publicly available at https://github.com/jianweishuai/Dear-DIA-XMBD. AAAS 2023-06-26 /pmc/articles/PMC10292580/ /pubmed/37377457 http://dx.doi.org/10.34133/research.0179 Text en Copyright © 2023 Qingzu He et al. https://creativecommons.org/licenses/by/4.0/Exclusive licensee Science and Technology Review Publishing House. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
He, Qingzu
Zhong, Chuan-Qi
Li, Xiang
Guo, Huan
Li, Yiming
Gao, Mingxuan
Yu, Rongshan
Liu, Xianming
Zhang, Fangfei
Guo, Donghui
Ye, Fangfu
Guo, Tiannan
Shuai, Jianwei
Han, Jiahuai
Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics
title Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics
title_full Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics
title_fullStr Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics
title_full_unstemmed Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics
title_short Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics
title_sort dear-dia(xmbd): deep autoencoder enables deconvolution of data-independent acquisition proteomics
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10292580/
https://www.ncbi.nlm.nih.gov/pubmed/37377457
http://dx.doi.org/10.34133/research.0179
work_keys_str_mv AT heqingzu deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics
AT zhongchuanqi deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics
AT lixiang deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics
AT guohuan deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics
AT liyiming deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics
AT gaomingxuan deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics
AT yurongshan deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics
AT liuxianming deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics
AT zhangfangfei deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics
AT guodonghui deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics
AT yefangfu deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics
AT guotiannan deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics
AT shuaijianwei deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics
AT hanjiahuai deardiaxmbddeepautoencoderenablesdeconvolutionofdataindependentacquisitionproteomics