Cargando…
Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics
Data-independent acquisition (DIA) technology for protein identification from mass spectrometry and related algorithms is developing rapidly. The spectrum-centric analysis of DIA data without the use of spectra library from data-dependent acquisition data represents a promising direction. In this pa...
Autores principales: | He, Qingzu, Zhong, Chuan-Qi, Li, Xiang, Guo, Huan, Li, Yiming, Gao, Mingxuan, Yu, Rongshan, Liu, Xianming, Zhang, Fangfei, Guo, Donghui, Ye, Fangfu, Guo, Tiannan, Shuai, Jianwei, Han, Jiahuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10292580/ https://www.ncbi.nlm.nih.gov/pubmed/37377457 http://dx.doi.org/10.34133/research.0179 |
Ejemplares similares
-
Deep representation features from DreamDIA(XMBD) improve the analysis of data-independent acquisition proteomics
por: Gao, Mingxuan, et al.
Publicado: (2021) -
Dice-XMBD: Deep Learning-Based Cell Segmentation for Imaging Mass Cytometry
por: Xiao, Xu, et al.
Publicado: (2021) -
Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD)
por: Lin, Yating, et al.
Publicado: (2022) -
DAISM-DNN(XMBD): Highly accurate cell type proportion estimation with in silico data augmentation and deep neural networks
por: Lin, Yating, et al.
Publicado: (2022) -
CITEMO(XMBD): A flexible single-cell multimodal omics analysis framework to reveal the heterogeneity of immune cells
por: Hu, Huan, et al.
Publicado: (2022)