Cargando…
PET-validated EEG-machine learning algorithm predicts brain amyloid pathology in pre-dementia Alzheimer’s disease
Developing reliable biomarkers is important for screening Alzheimer’s disease (AD) and monitoring its progression. Although EEG is non-invasive direct measurement of brain neural activity and has potentials for various neurologic disorders, vulnerability to noise, difficulty in clinical interpretati...
Autores principales: | Kim, Nam Heon, Park, Ukeob, Yang, Dong Won, Choi, Seong Hye, Youn, Young Chul, Kang, Seung Wan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10293163/ https://www.ncbi.nlm.nih.gov/pubmed/37365198 http://dx.doi.org/10.1038/s41598-023-36713-0 |
Ejemplares similares
-
Machine Learning to Predict Brain Amyloid Pathology in Pre-dementia Alzheimer’s Disease Using QEEG Features and Genetic Algorithm Heuristic
por: Kim, Nam Heon, et al.
Publicado: (2021) -
Classification of Aβ State From Brain Amyloid PET Images Using Machine Learning Algorithm
por: Simfukwe, Chanda, et al.
Publicado: (2023) -
Prediction of amyloid PET positivity via machine learning algorithms trained with EDTA-based blood amyloid-β oligomerization data
por: Youn, Young Chul, et al.
Publicado: (2022) -
EEG Characteristics of Dementia With Lewy Bodies, Alzheimer’s Disease and Mixed Pathology
por: van der Zande, Jessica J., et al.
Publicado: (2018) -
Novel quantitative electroencephalogram feature image adapted for deep learning: Verification through classification of Alzheimer’s disease dementia
por: Jeong, Taegyun, et al.
Publicado: (2022)