Cargando…

Neural complexity through a nonextensive statistical–mechanical approach of human electroencephalograms

The brain is a complex system whose understanding enables potentially deeper approaches to mental phenomena. Dynamics of wide classes of complex systems have been satisfactorily described within q-statistics, a current generalization of Boltzmann-Gibbs (BG) statistics. Here, we study human electroen...

Descripción completa

Detalles Bibliográficos
Autores principales: Abramov, Dimitri Marques, Tsallis, Constantino, Lima, Henrique Santos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10293202/
https://www.ncbi.nlm.nih.gov/pubmed/37365196
http://dx.doi.org/10.1038/s41598-023-37219-5
Descripción
Sumario:The brain is a complex system whose understanding enables potentially deeper approaches to mental phenomena. Dynamics of wide classes of complex systems have been satisfactorily described within q-statistics, a current generalization of Boltzmann-Gibbs (BG) statistics. Here, we study human electroencephalograms of typical human adults (EEG), very specifically their inter-occurrence times across an arbitrarily chosen threshold of the signal (observed, for instance, at the midparietal location in scalp). The distributions of these inter-occurrence times differ from those usually emerging within BG statistical mechanics. They are instead well approached within the q-statistical theory, based on non-additive entropies characterized by the index q. The present method points towards a suitable tool for quantitatively accessing brain complexity, thus potentially opening useful studies of the properties of both typical and altered brain physiology.