Cargando…

Hazards&Robots: A dataset for visual anomaly detection in robotics

We propose Hazards&Robots, a dataset for Visual Anomaly Detection in Robotics. The dataset is composed of 324,408 RGB frames, and corresponding feature vectors; it contains 145,470 normal frames and 178,938 anomalous ones categorized in 20 different anomaly classes. The dataset can be used to tr...

Descripción completa

Detalles Bibliográficos
Autores principales: Mantegazza, Dario, Xhyra, Alind, Gambardella, Luca M., Giusti, Alessandro, Guzzi, Jérôme
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10294035/
https://www.ncbi.nlm.nih.gov/pubmed/37383812
http://dx.doi.org/10.1016/j.dib.2023.109264
_version_ 1785063109961973760
author Mantegazza, Dario
Xhyra, Alind
Gambardella, Luca M.
Giusti, Alessandro
Guzzi, Jérôme
author_facet Mantegazza, Dario
Xhyra, Alind
Gambardella, Luca M.
Giusti, Alessandro
Guzzi, Jérôme
author_sort Mantegazza, Dario
collection PubMed
description We propose Hazards&Robots, a dataset for Visual Anomaly Detection in Robotics. The dataset is composed of 324,408 RGB frames, and corresponding feature vectors; it contains 145,470 normal frames and 178,938 anomalous ones categorized in 20 different anomaly classes. The dataset can be used to train and test current and novel visual anomaly detection methods such as those based on deep learning vision models. The data is recorded with a DJI Robomaster S1 front facing camera. The ground robot, controlled by a human operator, traverses university corridors. Considered anomalies include presence of humans, unexpected objects on the floor, defects to the robot. Preliminary versions of the dataset are used in [1,3]. This version is available at [12]
format Online
Article
Text
id pubmed-10294035
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-102940352023-06-28 Hazards&Robots: A dataset for visual anomaly detection in robotics Mantegazza, Dario Xhyra, Alind Gambardella, Luca M. Giusti, Alessandro Guzzi, Jérôme Data Brief Data Article We propose Hazards&Robots, a dataset for Visual Anomaly Detection in Robotics. The dataset is composed of 324,408 RGB frames, and corresponding feature vectors; it contains 145,470 normal frames and 178,938 anomalous ones categorized in 20 different anomaly classes. The dataset can be used to train and test current and novel visual anomaly detection methods such as those based on deep learning vision models. The data is recorded with a DJI Robomaster S1 front facing camera. The ground robot, controlled by a human operator, traverses university corridors. Considered anomalies include presence of humans, unexpected objects on the floor, defects to the robot. Preliminary versions of the dataset are used in [1,3]. This version is available at [12] Elsevier 2023-05-24 /pmc/articles/PMC10294035/ /pubmed/37383812 http://dx.doi.org/10.1016/j.dib.2023.109264 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Data Article
Mantegazza, Dario
Xhyra, Alind
Gambardella, Luca M.
Giusti, Alessandro
Guzzi, Jérôme
Hazards&Robots: A dataset for visual anomaly detection in robotics
title Hazards&Robots: A dataset for visual anomaly detection in robotics
title_full Hazards&Robots: A dataset for visual anomaly detection in robotics
title_fullStr Hazards&Robots: A dataset for visual anomaly detection in robotics
title_full_unstemmed Hazards&Robots: A dataset for visual anomaly detection in robotics
title_short Hazards&Robots: A dataset for visual anomaly detection in robotics
title_sort hazards&robots: a dataset for visual anomaly detection in robotics
topic Data Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10294035/
https://www.ncbi.nlm.nih.gov/pubmed/37383812
http://dx.doi.org/10.1016/j.dib.2023.109264
work_keys_str_mv AT mantegazzadario hazardsrobotsadatasetforvisualanomalydetectioninrobotics
AT xhyraalind hazardsrobotsadatasetforvisualanomalydetectioninrobotics
AT gambardellalucam hazardsrobotsadatasetforvisualanomalydetectioninrobotics
AT giustialessandro hazardsrobotsadatasetforvisualanomalydetectioninrobotics
AT guzzijerome hazardsrobotsadatasetforvisualanomalydetectioninrobotics