Cargando…
Hazards&Robots: A dataset for visual anomaly detection in robotics
We propose Hazards&Robots, a dataset for Visual Anomaly Detection in Robotics. The dataset is composed of 324,408 RGB frames, and corresponding feature vectors; it contains 145,470 normal frames and 178,938 anomalous ones categorized in 20 different anomaly classes. The dataset can be used to tr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10294035/ https://www.ncbi.nlm.nih.gov/pubmed/37383812 http://dx.doi.org/10.1016/j.dib.2023.109264 |
_version_ | 1785063109961973760 |
---|---|
author | Mantegazza, Dario Xhyra, Alind Gambardella, Luca M. Giusti, Alessandro Guzzi, Jérôme |
author_facet | Mantegazza, Dario Xhyra, Alind Gambardella, Luca M. Giusti, Alessandro Guzzi, Jérôme |
author_sort | Mantegazza, Dario |
collection | PubMed |
description | We propose Hazards&Robots, a dataset for Visual Anomaly Detection in Robotics. The dataset is composed of 324,408 RGB frames, and corresponding feature vectors; it contains 145,470 normal frames and 178,938 anomalous ones categorized in 20 different anomaly classes. The dataset can be used to train and test current and novel visual anomaly detection methods such as those based on deep learning vision models. The data is recorded with a DJI Robomaster S1 front facing camera. The ground robot, controlled by a human operator, traverses university corridors. Considered anomalies include presence of humans, unexpected objects on the floor, defects to the robot. Preliminary versions of the dataset are used in [1,3]. This version is available at [12] |
format | Online Article Text |
id | pubmed-10294035 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-102940352023-06-28 Hazards&Robots: A dataset for visual anomaly detection in robotics Mantegazza, Dario Xhyra, Alind Gambardella, Luca M. Giusti, Alessandro Guzzi, Jérôme Data Brief Data Article We propose Hazards&Robots, a dataset for Visual Anomaly Detection in Robotics. The dataset is composed of 324,408 RGB frames, and corresponding feature vectors; it contains 145,470 normal frames and 178,938 anomalous ones categorized in 20 different anomaly classes. The dataset can be used to train and test current and novel visual anomaly detection methods such as those based on deep learning vision models. The data is recorded with a DJI Robomaster S1 front facing camera. The ground robot, controlled by a human operator, traverses university corridors. Considered anomalies include presence of humans, unexpected objects on the floor, defects to the robot. Preliminary versions of the dataset are used in [1,3]. This version is available at [12] Elsevier 2023-05-24 /pmc/articles/PMC10294035/ /pubmed/37383812 http://dx.doi.org/10.1016/j.dib.2023.109264 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Data Article Mantegazza, Dario Xhyra, Alind Gambardella, Luca M. Giusti, Alessandro Guzzi, Jérôme Hazards&Robots: A dataset for visual anomaly detection in robotics |
title | Hazards&Robots: A dataset for visual anomaly detection in robotics |
title_full | Hazards&Robots: A dataset for visual anomaly detection in robotics |
title_fullStr | Hazards&Robots: A dataset for visual anomaly detection in robotics |
title_full_unstemmed | Hazards&Robots: A dataset for visual anomaly detection in robotics |
title_short | Hazards&Robots: A dataset for visual anomaly detection in robotics |
title_sort | hazards&robots: a dataset for visual anomaly detection in robotics |
topic | Data Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10294035/ https://www.ncbi.nlm.nih.gov/pubmed/37383812 http://dx.doi.org/10.1016/j.dib.2023.109264 |
work_keys_str_mv | AT mantegazzadario hazardsrobotsadatasetforvisualanomalydetectioninrobotics AT xhyraalind hazardsrobotsadatasetforvisualanomalydetectioninrobotics AT gambardellalucam hazardsrobotsadatasetforvisualanomalydetectioninrobotics AT giustialessandro hazardsrobotsadatasetforvisualanomalydetectioninrobotics AT guzzijerome hazardsrobotsadatasetforvisualanomalydetectioninrobotics |