Cargando…
A Bayesian optimization tunning integrated multi-stacking classifier framework for the prediction of radiodermatitis from 4D-CT of patients underwent breast cancer radiotherapy
PURPOSE: In this study, we aimed to develop a novel Bayesian optimization based multi-stacking deep learning platform for the prediction of radiation-induced dermatitis (grade ≥ two) (RD 2+) before radiotherapy, by using multi-region dose-gradient-related radiomics features extracted from pre-treatm...
Autores principales: | Wu, Kuan, Miu, Xiaoyan, Wang, Hui, Li, Xiadong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10294237/ https://www.ncbi.nlm.nih.gov/pubmed/37384290 http://dx.doi.org/10.3389/fonc.2023.1152020 |
Ejemplares similares
-
Incidence of radiodermatitis in breast cancer patients during hypofractionated radiotherapy
por: Vieira, Larissa Aparecida Corrêa, et al.
Publicado: (2022) -
Periarterial Sympathectomy in Radiodermatitis
Publicado: (1932) -
Ascensión Tun : novela
por: Molina, Silvia, 1946-
Publicado: (1981) -
Comparative Evaluation of Topical Corticosteroid and Moisturizer in the Prevention of Radiodermatitis in Breast Cancer Radiotherapy
por: Uysal, Bora, et al.
Publicado: (2020) -
Radiodermatitis: severity, predictive factors and discontinuation of radiotherapy in patients with anal and rectal cancer
por: Bastos, Larissa Jucá Dantas, et al.
Publicado: (2022)