Cargando…
GABAergic neurons differentiated from BDNF- and Dlx2-modified neural stem cells restore disrupted neural circuits in brainstem stroke
BACKGROUND: Brainstem stroke causes severe and persistent neurological impairment. Due to the limited spontaneous recovery and regeneration of the disrupted neural circuits, transplantation of exogenous neural stem cells (NSCs) was an alternative, while there were limitations for primitive NSCs. MET...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10294474/ https://www.ncbi.nlm.nih.gov/pubmed/37365654 http://dx.doi.org/10.1186/s13287-023-03378-5 |
Sumario: | BACKGROUND: Brainstem stroke causes severe and persistent neurological impairment. Due to the limited spontaneous recovery and regeneration of the disrupted neural circuits, transplantation of exogenous neural stem cells (NSCs) was an alternative, while there were limitations for primitive NSCs. METHODS: We established a mouse model of brainstem stroke by injecting endothelin in the right pons. Brain-derived neurotrophic factor (BDNF)- and distal-less homeobox 2 (Dlx2)-modified NSCs were transplanted to treat brainstem stroke. Transsynaptic viral tracking, immunostaining, magnetic resonance imaging, behavioral testing, and whole-cell patch clamp recordings were applied to probe the pathophysiology and therapeutic prospects of BDNF- and Dlx2-modified NSCs. RESULTS: GABAergic neurons were predominantly lost after the brainstem stroke. No endogenous NSCs were generated in situ or migrated from the neurogenesis niches within the brainstem infarct region. Co-overexpressions of BDNF and Dlx2 not only promoted the survival of NSCs, but also boosted the differentiation of NSCs into GABAergic neurons. Results from transsynaptic virus tracking, immunostaining, and evidence from whole-cell patch clamping revealed the morphological and functional integration of the grafted BDNF- and Dlx2-modified NSCs-derived neurons with the host neural circuits. Neurological function was improved by transplantation of BDNF- and Dlx2-modified NSCs in brainstem stroke. CONCLUSIONS: These findings demonstrated that BDNF- and Dlx2-modified NSCs differentiated into GABAergic neurons, integrated into and reconstituted the host neural networks, and alleviated the ischemic injury. It thus provided a potential therapeutic strategy for brainstem stroke. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13287-023-03378-5. |
---|