Cargando…
Performance comparison between multi-center histopathology datasets of a weakly-supervised deep learning model for pancreatic ductal adenocarcinoma detection
BACKGROUND: Pancreatic ductal carcinoma patients have a really poor prognosis given its difficult early detection and the lack of early symptoms. Digital pathology is routinely used by pathologists to diagnose the disease. However, visually inspecting the tissue is a time-consuming task, which slows...
Autores principales: | Carrillo-Perez, Francisco, Ortuno, Francisco M., Börjesson, Alejandro, Rojas, Ignacio, Herrera, Luis Javier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10294485/ https://www.ncbi.nlm.nih.gov/pubmed/37365659 http://dx.doi.org/10.1186/s40644-023-00586-3 |
Ejemplares similares
-
Correction: Performance comparison between multi-center histopathology datasets of a weakly-supervised deep learning model for pancreatic ductal adenocarcinoma detection
por: Carrillo-Perez, Francisco, et al.
Publicado: (2023) -
Development and Histopathological Characterization of Tumorgraft Models of Pancreatic Ductal Adenocarcinoma
por: Garcia, Patrick L., et al.
Publicado: (2013) -
Integrative multi-platform meta-analysis of gene expression profiles in pancreatic ductal adenocarcinoma patients for identifying novel diagnostic biomarkers
por: Irigoyen, Antonio, et al.
Publicado: (2018) -
Communicator-Driven Data Preprocessing Improves Deep Transfer Learning of Histopathological Prediction of Pancreatic Ductal Adenocarcinoma
por: Kronberg, Raphael M., et al.
Publicado: (2022) -
Pancreatic Ductal Adenocarcinoma Associated with Autoimmune Pancreatitis
por: Pezzilli, Raffaele, et al.
Publicado: (2011)