Cargando…

Repeat-Induced Point Mutation and Gene Conversion Coinciding with Heterochromatin Shape the Genome of a Plant-Pathogenic Fungus

Meiosis is associated with genetic changes in the genome—via recombination, gene conversion, and mutations. The occurrence of gene conversion and mutations during meiosis may further be influenced by the chromatin conformation, similar to the effect of the chromatin conformation on the mitotic mutat...

Descripción completa

Detalles Bibliográficos
Autores principales: Komluski, Jovan, Habig, Michael, Stukenbrock, Eva H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10294615/
https://www.ncbi.nlm.nih.gov/pubmed/37093087
http://dx.doi.org/10.1128/mbio.03290-22
Descripción
Sumario:Meiosis is associated with genetic changes in the genome—via recombination, gene conversion, and mutations. The occurrence of gene conversion and mutations during meiosis may further be influenced by the chromatin conformation, similar to the effect of the chromatin conformation on the mitotic mutation rate. To date, however, the exact distribution and type of meiosis-associated changes and the role of the chromatin conformation in this context are largely unexplored. Here, we determine recombination, gene conversion, and de novo mutations using whole-genome sequencing of all meiotic products of 23 individual meioses in Zymoseptoria tritici, an important pathogen of wheat. We confirm a high genome-wide recombination rate of 65 centimorgan (cM)/Mb and see higher recombination rates on the accessory compared to core chromosomes. A substantial fraction of 0.16% of all polymorphic markers was affected by gene conversions, showing a weak GC-bias and occurring at higher frequency in regions of constitutive heterochromatin, indicated by the histone modification H3K9me3. The de novo mutation rate associated with meiosis was approximately three orders of magnitude higher than the corresponding mitotic mutation rate. Importantly, repeat-induced point mutation (RIP), a fungal defense mechanism against duplicated sequences, is active in Z. tritici and responsible for the majority of these de novo meiotic mutations. Our results indicate that the genetic changes associated with meiosis are a major source of variability in the genome of an important plant pathogen and shape its evolutionary trajectory.