Cargando…
A Disentangled VAE-BiLSTM Model for Heart Rate Anomaly Detection
Cardiovascular diseases (CVDs) remain a leading cause of death globally. According to the American Heart Association, approximately 19.1 million deaths were attributed to CVDs in 2020, in particular, ischemic heart disease and stroke. Several known risk factors for CVDs include smoking, alcohol cons...
Autores principales: | Staffini, Alessio, Svensson, Thomas, Chung, Ung-il, Svensson, Akiko Kishi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10294855/ https://www.ncbi.nlm.nih.gov/pubmed/37370614 http://dx.doi.org/10.3390/bioengineering10060683 |
Ejemplares similares
-
Heart Rate Modeling and Prediction Using Autoregressive Models and Deep Learning
por: Staffini, Alessio, et al.
Publicado: (2021) -
DA-LSTM-VAE: Dual-Stage Attention-Based LSTM-VAE for KPI Anomaly Detection
por: Zhao, Yun, et al.
Publicado: (2022) -
An Agent-Based Model of the Local Spread of SARS-CoV-2: Modeling Study
por: Staffini, Alessio, et al.
Publicado: (2021) -
Statistical Methods for Item Reduction in a Representative Lifestyle Questionnaire: Pilot Questionnaire Study
por: Staffini, Alessio, et al.
Publicado: (2022) -
LSTM-Based VAE-GAN for Time-Series Anomaly Detection
por: Niu, Zijian, et al.
Publicado: (2020)