Cargando…

Improving Breast Cancer Detection and Diagnosis through Semantic Segmentation Using the Unet3+ Deep Learning Framework

We present an analysis and evaluation of breast cancer detection and diagnosis using segmentation models. We used an advanced semantic segmentation method and a deep convolutional neural network to identify the Breast Imaging Reporting and Data System (BI-RADS) lexicon for breast ultrasound images....

Descripción completa

Detalles Bibliográficos
Autores principales: Alam, Taukir, Shia, Wei-Chung, Hsu, Fang-Rong, Hassan, Taimoor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10294974/
https://www.ncbi.nlm.nih.gov/pubmed/37371631
http://dx.doi.org/10.3390/biomedicines11061536
Descripción
Sumario:We present an analysis and evaluation of breast cancer detection and diagnosis using segmentation models. We used an advanced semantic segmentation method and a deep convolutional neural network to identify the Breast Imaging Reporting and Data System (BI-RADS) lexicon for breast ultrasound images. To improve the segmentation results, we used six models to analyse 309 patients, including 151 benign and 158 malignant tumour images. We compared the Unet3+ architecture with several other models, such as FCN, Unet, SegNet, DeeplabV3+ and pspNet. The Unet3+ model is a state-of-the-art, semantic segmentation architecture that showed optimal performance with an average accuracy of 82.53% and an average intersection over union (IU) of 52.57%. The weighted IU was found to be 89.14% with a global accuracy of 90.99%. The application of these types of segmentation models to the detection and diagnosis of breast cancer provides remarkable results. Our proposed method has the potential to provide a more accurate and objective diagnosis of breast cancer, leading to improved patient outcomes.