Cargando…
Improving Breast Cancer Detection and Diagnosis through Semantic Segmentation Using the Unet3+ Deep Learning Framework
We present an analysis and evaluation of breast cancer detection and diagnosis using segmentation models. We used an advanced semantic segmentation method and a deep convolutional neural network to identify the Breast Imaging Reporting and Data System (BI-RADS) lexicon for breast ultrasound images....
Autores principales: | Alam, Taukir, Shia, Wei-Chung, Hsu, Fang-Rong, Hassan, Taimoor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10294974/ https://www.ncbi.nlm.nih.gov/pubmed/37371631 http://dx.doi.org/10.3390/biomedicines11061536 |
Ejemplares similares
-
A New Semantic Segmentation Framework Based on UNet
por: Fu, Leiyang, et al.
Publicado: (2023) -
Active Learning with Bayesian UNet for Efficient Semantic Image Segmentation
por: Saidu, Isah Charles, et al.
Publicado: (2021) -
AX-Unet: A Deep Learning Framework for Image Segmentation to Assist Pancreatic Tumor Diagnosis
por: Yang, Minqiang, et al.
Publicado: (2022) -
RAD-UNet: Research on an improved lung nodule semantic segmentation algorithm based on deep learning
por: Wu, Zezhi, et al.
Publicado: (2023) -
Connected-UNets: a deep learning architecture for breast mass segmentation
por: Baccouche, Asma, et al.
Publicado: (2021)