Cargando…

Motor Cortex Inhibition and Facilitation Correlates with Fibromyalgia Compensatory Mechanisms and Pain: A Cross-Sectional Study

The role of transcranial magnetic stimulation (TMS) measures as biomarkers of fibromyalgia syndrome (FMS) phenotypes is still unclear. We aimed to determine the clinical correlates of TMS measures in FMS patients. We conducted a cross-sectional analysis that included 58 patients. We performed standa...

Descripción completa

Detalles Bibliográficos
Autores principales: Pacheco-Barrios, Kevin, Pimenta, Danielle Carolina, Pessotto, Anne Victorio, Fregni, Felipe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10294994/
https://www.ncbi.nlm.nih.gov/pubmed/37371638
http://dx.doi.org/10.3390/biomedicines11061543
Descripción
Sumario:The role of transcranial magnetic stimulation (TMS) measures as biomarkers of fibromyalgia syndrome (FMS) phenotypes is still unclear. We aimed to determine the clinical correlates of TMS measures in FMS patients. We conducted a cross-sectional analysis that included 58 patients. We performed standardized TMS assessments, including resting motor threshold (MT), motor-evoked potential (MEP), short intracortical inhibition (SICI), and intracortical facilitation (ICF). Sociodemographic, clinical questionnaires, and quantitative sensory testing were collected from all of the patients. Univariate and multivariate linear regression models were built to explore TMS-associated factors. We found that SICI did not significantly correlate with pain levels but was associated with sleepiness, comorbidities, disease duration, and anxiety. On the other hand, ICF showed a positive correlation with pain levels and a negative correlation with body mass index (BMI). BMI was a negative effect modifier of the ICF and pain association. The clinical correlates of MT and MEP were scarce. Our results suggest that SICI and ICF metrics are potential phenotyping biomarkers in FMS related to disease compensation and levels of pain perception, respectively. The clinical translation of TMS paired-pulse protocols represents an opportunity for a mechanistic understanding of FMS and the future development of precision treatments.