Cargando…
Model-Driven Analysis of ECG Using Reinforcement Learning
Modeling is essential to better understand the generative mechanisms responsible for experimental observations gathered from complex systems. In this work, we are using such an approach to analyze the electrocardiogram (ECG). We present a systematic framework to decompose ECG signals into sums of ov...
Autores principales: | O’Reilly, Christian, Oruganti, Sai Durga Rithvik, Tilwani, Deepa, Bradshaw, Jessica |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295052/ https://www.ncbi.nlm.nih.gov/pubmed/37370627 http://dx.doi.org/10.3390/bioengineering10060696 |
Ejemplares similares
-
ECG Recordings as Predictors of Very Early Autism Likelihood: A Machine Learning Approach
por: Tilwani, Deepa, et al.
Publicado: (2023) -
Theta Coordinated Error-Driven Learning in the Hippocampus
por: Ketz, Nicholas, et al.
Publicado: (2013) -
Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning
por: Baek, Suwhan, et al.
Publicado: (2023) -
Action-driven contrastive representation for reinforcement learning
por: Kim, Minbeom, et al.
Publicado: (2022) -
Transfer learning for ECG classification
por: Weimann, Kuba, et al.
Publicado: (2021)