Cargando…
Deep-Learning-Based Segmentation of Extraocular Muscles from Magnetic Resonance Images
In this study, we investigated the performance of four deep learning frameworks of U-Net, U-NeXt, DeepLabV3+, and ConResNet in multi-class pixel-based segmentation of the extraocular muscles (EOMs) from coronal MRI. Performances of the four models were evaluated and compared with the standard F-meas...
Autores principales: | Qureshi, Amad, Lim, Seongjin, Suh, Soh Youn, Mutawak, Bassam, Chitnis, Parag V., Demer, Joseph L., Wei, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295225/ https://www.ncbi.nlm.nih.gov/pubmed/37370630 http://dx.doi.org/10.3390/bioengineering10060699 |
Ejemplares similares
-
Biomechanical modeling of actively controlled rectus extraocular muscle pulleys
por: Wei, Qi, et al.
Publicado: (2022) -
Extraocular Muscle Compartments in Superior Oblique Palsy
por: Suh, Soh Youn, et al.
Publicado: (2016) -
Changes in Extraocular Muscle Volume During Ocular Duction
por: Clark, Robert A., et al.
Publicado: (2016) -
Creep Behavior of Passive Bovine Extraocular Muscle
por: Yoo, Lawrence, et al.
Publicado: (2011) -
Automated Segmentation of Levator Ani Muscle from 3D Endovaginal Ultrasound Images
por: Rabbat, Nada, et al.
Publicado: (2023)