Cargando…
Sparse Logistic Regression-Based EEG Channel Optimization Algorithm for Improved Universality across Participants
Electroencephalogram (EEG) channel optimization can reduce redundant information and improve EEG decoding accuracy by selecting the most informative channels. This article aims to investigate the universality regarding EEG channel optimization in terms of how well the selected EEG channels can be ge...
Autores principales: | Shi, Yuxi, Li, Yuanhao, Koike, Yasuharu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295307/ https://www.ncbi.nlm.nih.gov/pubmed/37370595 http://dx.doi.org/10.3390/bioengineering10060664 |
Ejemplares similares
-
Leukemia Prediction Using Sparse Logistic Regression
por: Manninen, Tapio, et al.
Publicado: (2013) -
Sparse Ordinal Logistic Regression and Its Application to Brain Decoding
por: Satake, Emi, et al.
Publicado: (2018) -
Analysis of sparse data in logistic regression in medical research: A newer approach
por: Devika, S, et al.
Publicado: (2016) -
Estimating Phred scores of Illumina base calls by logistic regression and sparse modeling
por: Zhang, Sheng, et al.
Publicado: (2017) -
Bias in Odds Ratios From Logistic Regression Methods With Sparse Data Sets
por: Gosho, Masahiko, et al.
Publicado: (2023)