Cargando…

Mitochondria Quality Control and Male Fertility

SIMPLE SUMMARY: Mitochondria play a crucial role in numerous cellular processes, including energy production, apoptosis, and calcium homeostasis. In the male reproductive system, mitochondria are particularly important for the development and maintenance of germ cells, which ultimately lead to the p...

Descripción completa

Detalles Bibliográficos
Autores principales: Costa, José, Braga, Patrícia C., Rebelo, Irene, Oliveira, Pedro F., Alves, Marco G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295310/
https://www.ncbi.nlm.nih.gov/pubmed/37372112
http://dx.doi.org/10.3390/biology12060827
Descripción
Sumario:SIMPLE SUMMARY: Mitochondria play a crucial role in numerous cellular processes, including energy production, apoptosis, and calcium homeostasis. In the male reproductive system, mitochondria are particularly important for the development and maintenance of germ cells, which ultimately lead to the production of healthy sperm. Dysfunction in mitochondrial physiology can lead to an imbalance in reactive oxygen species, which can have detrimental effects on sperm quality. Thus, mitochondrial quality control can ultimately define male reproductive capacity. Studies have shown that non-communicable diseases such as obesity, diabetes, and cardiovascular disease can have a negative impact on mitochondrial function in sperm, leading to decreased sperm motility, concentration, and viability. Therefore, understanding and managing mitochondrial quality control could be a valuable approach to developing new strategies to combat male infertility. Herein we discuss the relevance of mitochondria quality control to male fertility, particularly the role of oxidative stress and the parameters needed to be evaluated. ABSTRACT: Mitochondria are pivotal to cellular homeostasis, performing vital functions such as bioenergetics, biosynthesis, and cell signalling. Proper maintenance of these processes is crucial to prevent disease development and ensure optimal cell function. Mitochondrial dynamics, including fission, fusion, biogenesis, mitophagy, and apoptosis, maintain mitochondrial quality control, which is essential for overall cell health. In male reproduction, mitochondria play a pivotal role in germ cell development and any defects in mitochondrial quality can have serious consequences on male fertility. Reactive oxygen species (ROS) also play a crucial role in sperm capacitation, but excessive ROS levels can trigger oxidative damage. Any imbalance between ROS and sperm quality control, caused by non-communicable diseases or environmental factors, can lead to an increase in oxidative stress, cell damage, and apoptosis, which in turn affect sperm concentration, quality, and motility. Therefore, assessing mitochondrial functionality and quality control is essential to gain valuable insights into male infertility. In sum, proper mitochondrial functionality is essential for overall health, and particularly important for male fertility. The assessment of mitochondrial functionality and quality control can provide crucial information for the study and management of male infertility and may lead to the development of new strategies for its management.