Cargando…
EnsemDeepCADx: Empowering Colorectal Cancer Diagnosis with Mixed-Dataset Features and Ensemble Fusion CNNs on Evidence-Based CKHK-22 Dataset
Colorectal cancer is associated with a high mortality rate and significant patient risk. Images obtained during a colonoscopy are used to make a diagnosis, highlighting the importance of timely diagnosis and treatment. Using techniques of deep learning could enhance the diagnostic accuracy of existi...
Autores principales: | Raju, Akella Subrahmanya Narasimha, Venkatesh, Kaliyamurthy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295325/ https://www.ncbi.nlm.nih.gov/pubmed/37370669 http://dx.doi.org/10.3390/bioengineering10060738 |
Ejemplares similares
-
ColoRectalCADx: Expeditious Recognition of Colorectal Cancer with Integrated Convolutional Neural Networks and Visual Explanations Using Mixed Dataset Evidence
por: Narasimha Raju, Akella S., et al.
Publicado: (2022) -
Dexterous Identification of Carcinoma through ColoRectalCADx with Dichotomous Fusion CNN and UNet Semantic Segmentation
por: Narasimha Raju, Akella S., et al.
Publicado: (2022) -
iDHU-Ensem: Identification of dihydrouridine sites through ensemble learning models
por: Suleman, Muhammad Taseer, et al.
Publicado: (2023) -
EnsemV3X: a novel ensembled deep learning architecture for multi-label scene classification
por: Sobti, Priyal, et al.
Publicado: (2021) -
Compression schemes for mining large datasets: a machine learning perspective
por: Babu, T Ravindra, et al.
Publicado: (2013)