Cargando…
PPG2ECGps: An End-to-End Subject-Specific Deep Neural Network Model for Electrocardiogram Reconstruction from Photoplethysmography Signals without Pulse Arrival Time Adjustments
Electrocardiograms (ECGs) provide crucial information for evaluating a patient’s cardiovascular health; however, they are not always easily accessible. Photoplethysmography (PPG), a technology commonly used in wearable devices such as smartwatches, has shown promise for constructing ECGs. Several me...
Autores principales: | Tang, Qunfeng, Chen, Zhencheng, Ward, Rabab, Menon, Carlo, Elgendi, Mohamed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295332/ https://www.ncbi.nlm.nih.gov/pubmed/37370561 http://dx.doi.org/10.3390/bioengineering10060630 |
Ejemplares similares
-
Robust Reconstruction of Electrocardiogram Using Photoplethysmography: A Subject-Based Model
por: Tang, Qunfeng, et al.
Publicado: (2022) -
PPGSynth: An Innovative Toolbox for Synthesizing Regular and Irregular Photoplethysmography Waveforms
por: Tang, Qunfeng, et al.
Publicado: (2020) -
Subject-Based Model for Reconstructing Arterial Blood Pressure from Photoplethysmogram
por: Tang, Qunfeng, et al.
Publicado: (2022) -
GRGB rPPG: An Efficient Low-Complexity Remote Photoplethysmography-Based Algorithm for Heart Rate Estimation
por: Haugg, Fridolin, et al.
Publicado: (2023) -
Hypertension Assessment via ECG and PPG Signals: An Evaluation Using MIMIC Database
por: Liang, Yongbo, et al.
Publicado: (2018)