Cargando…

Prediction Model for Pre-Eclampsia Using Gestational-Age-Specific Serum Creatinine Distribution

SIMPLE SUMMARY: The prediction of pre-eclampsia (PE) is a crucial task both medically and socioeconomically. Recently, several biomarkers have been developed with clinically promising results. However, the currently identified markers face the challenges of their applicability in the clinical settin...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Jieun, Hwang, Sangwon, Lee, Taesic, Ahn, Kwangjin, Seo, Dong Min, Choi, Seong Jin, Uh, Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295363/
https://www.ncbi.nlm.nih.gov/pubmed/37372101
http://dx.doi.org/10.3390/biology12060816
_version_ 1785063402661478400
author Kang, Jieun
Hwang, Sangwon
Lee, Taesic
Ahn, Kwangjin
Seo, Dong Min
Choi, Seong Jin
Uh, Young
author_facet Kang, Jieun
Hwang, Sangwon
Lee, Taesic
Ahn, Kwangjin
Seo, Dong Min
Choi, Seong Jin
Uh, Young
author_sort Kang, Jieun
collection PubMed
description SIMPLE SUMMARY: The prediction of pre-eclampsia (PE) is a crucial task both medically and socioeconomically. Recently, several biomarkers have been developed with clinically promising results. However, the currently identified markers face the challenges of their applicability in the clinical settings due to factors such as cost and measurement platform. According to our study, incorporating serum creatinine (SCr) levels that can be easily derived from a real-world hospital database along with prior knowledge of hyperfiltration, which is a kidney-specific physiological adaptation in pregnancy, improved PE prediction significantly. The model developed in this study is practical and can be easily applied in primary care settings without requiring significant hospital database upgrades. ABSTRACT: Pre-eclampsia (PE) is a pregnancy-related disease, causing significant threats to both mothers and babies. Numerous studies have identified the association between PE and renal dysfunction. However, in clinical practice, kidney problems in pregnant women are often overlooked due to physiologic adaptations during pregnancy, including renal hyperfiltration. Recent studies have reported serum creatinine (SCr) level distribution based on gestational age (GA) and demonstrated that deviations from the expected patterns can predict adverse pregnancy outcomes, including PE. This study aimed to establish a PE prediction model using expert knowledge and by considering renal physiologic adaptation during pregnancy. This retrospective study included pregnant women who delivered at the Wonju Severance Christian Hospital. Input variables, such as age, gestational weeks, chronic diseases, and SCr levels, were used to establish the PE prediction model. By integrating SCr, GA, GA-specific SCr distribution, and quartile groups of GA-specific SCr (GAQ) were made. To provide generalized performance, a random sampling method was used. As a result, GAQ improved the predictive performance for any cases of PE and triple cases, including PE, preterm birth, and fetal growth restriction. We propose a prediction model for PE consolidating readily available clinical blood test information and pregnancy-related renal physiologic adaptations.
format Online
Article
Text
id pubmed-10295363
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-102953632023-06-28 Prediction Model for Pre-Eclampsia Using Gestational-Age-Specific Serum Creatinine Distribution Kang, Jieun Hwang, Sangwon Lee, Taesic Ahn, Kwangjin Seo, Dong Min Choi, Seong Jin Uh, Young Biology (Basel) Article SIMPLE SUMMARY: The prediction of pre-eclampsia (PE) is a crucial task both medically and socioeconomically. Recently, several biomarkers have been developed with clinically promising results. However, the currently identified markers face the challenges of their applicability in the clinical settings due to factors such as cost and measurement platform. According to our study, incorporating serum creatinine (SCr) levels that can be easily derived from a real-world hospital database along with prior knowledge of hyperfiltration, which is a kidney-specific physiological adaptation in pregnancy, improved PE prediction significantly. The model developed in this study is practical and can be easily applied in primary care settings without requiring significant hospital database upgrades. ABSTRACT: Pre-eclampsia (PE) is a pregnancy-related disease, causing significant threats to both mothers and babies. Numerous studies have identified the association between PE and renal dysfunction. However, in clinical practice, kidney problems in pregnant women are often overlooked due to physiologic adaptations during pregnancy, including renal hyperfiltration. Recent studies have reported serum creatinine (SCr) level distribution based on gestational age (GA) and demonstrated that deviations from the expected patterns can predict adverse pregnancy outcomes, including PE. This study aimed to establish a PE prediction model using expert knowledge and by considering renal physiologic adaptation during pregnancy. This retrospective study included pregnant women who delivered at the Wonju Severance Christian Hospital. Input variables, such as age, gestational weeks, chronic diseases, and SCr levels, were used to establish the PE prediction model. By integrating SCr, GA, GA-specific SCr distribution, and quartile groups of GA-specific SCr (GAQ) were made. To provide generalized performance, a random sampling method was used. As a result, GAQ improved the predictive performance for any cases of PE and triple cases, including PE, preterm birth, and fetal growth restriction. We propose a prediction model for PE consolidating readily available clinical blood test information and pregnancy-related renal physiologic adaptations. MDPI 2023-06-04 /pmc/articles/PMC10295363/ /pubmed/37372101 http://dx.doi.org/10.3390/biology12060816 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kang, Jieun
Hwang, Sangwon
Lee, Taesic
Ahn, Kwangjin
Seo, Dong Min
Choi, Seong Jin
Uh, Young
Prediction Model for Pre-Eclampsia Using Gestational-Age-Specific Serum Creatinine Distribution
title Prediction Model for Pre-Eclampsia Using Gestational-Age-Specific Serum Creatinine Distribution
title_full Prediction Model for Pre-Eclampsia Using Gestational-Age-Specific Serum Creatinine Distribution
title_fullStr Prediction Model for Pre-Eclampsia Using Gestational-Age-Specific Serum Creatinine Distribution
title_full_unstemmed Prediction Model for Pre-Eclampsia Using Gestational-Age-Specific Serum Creatinine Distribution
title_short Prediction Model for Pre-Eclampsia Using Gestational-Age-Specific Serum Creatinine Distribution
title_sort prediction model for pre-eclampsia using gestational-age-specific serum creatinine distribution
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295363/
https://www.ncbi.nlm.nih.gov/pubmed/37372101
http://dx.doi.org/10.3390/biology12060816
work_keys_str_mv AT kangjieun predictionmodelforpreeclampsiausinggestationalagespecificserumcreatininedistribution
AT hwangsangwon predictionmodelforpreeclampsiausinggestationalagespecificserumcreatininedistribution
AT leetaesic predictionmodelforpreeclampsiausinggestationalagespecificserumcreatininedistribution
AT ahnkwangjin predictionmodelforpreeclampsiausinggestationalagespecificserumcreatininedistribution
AT seodongmin predictionmodelforpreeclampsiausinggestationalagespecificserumcreatininedistribution
AT choiseongjin predictionmodelforpreeclampsiausinggestationalagespecificserumcreatininedistribution
AT uhyoung predictionmodelforpreeclampsiausinggestationalagespecificserumcreatininedistribution