Cargando…

Reduced Antibiotic Resistance in the Rhizosphere of Lupinus albus in Mercury-Contaminated Soil Mediated by the Addition of PGPB

SIMPLE SUMMARY: Mercury pollution represents a serious environmental and health problem. Additionally, it may lead to the selection of bacterial mechanisms of antibiotic resistance. The use of bacteria capable of improving plant development can help plants to better adapt to contaminated environment...

Descripción completa

Detalles Bibliográficos
Autores principales: González-Reguero, Daniel, Robas-Mora, Marina, Fernández-Pastrana, Vanesa M., Probanza-Lobo, Agustín, Jiménez-Gómez, Pedro Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295369/
https://www.ncbi.nlm.nih.gov/pubmed/37372086
http://dx.doi.org/10.3390/biology12060801
Descripción
Sumario:SIMPLE SUMMARY: Mercury pollution represents a serious environmental and health problem. Additionally, it may lead to the selection of bacterial mechanisms of antibiotic resistance. The use of bacteria capable of improving plant development can help plants to better adapt to contaminated environments, contribute to the decontamination of these sites and prevent antibiotic-resistant bacteria from affecting animal and human health. The present study proposes a way to evaluate the beneficial effect that some bacteria can have in mitigating the spread of antibiotic resistance in mercury-contaminated soils. In the experiments carried out, we observed how inoculated bacteria can reduce resistance to antibiotics in the soil, suggesting their potential for minimizing the dispersion of these mechanisms of antibiotic resistance. ABSTRACT: The emergence of antibiotic resistance (AR) poses a threat to the “One Health” approach. Likewise, mercury (Hg) pollution is a serious environmental and public health problem. Its ability to biomagnify through trophic levels induces numerous pathologies in humans. As well, it is known that Hg-resistance genes and AR genes are co-selected. The use of plant-growth-promoting bacteria (PGPB) can improve plant adaptation, decontamination of toxic compounds and control of AR dispersal. The cenoantibiogram, a technique that allows estimating the minimum inhibitory concentration (MIC) of a microbial community, has been postulated as a tool to effectively evaluate the evolution of a soil. The present study uses the metagenomics of 16S rRNA gene amplicons to understand the distribution of the microbial soil community prior to bacterial inoculation, and the cenoantibiogram technique to evaluate the ability of four PGPB and their consortia to minimize antibiotic resistance in the rhizosphere of Lupinus albus var. Orden Dorado grown in Hg-contaminated soils. Results showed that the addition of A1 strain (Brevibacterium frigoritolerans) and its consortia with A2, B1 and B2 strains reduced the edaphic community´s MIC against cephalosporins, ertapenem and tigecycline. The metagenomic study revealed that the high MIC of non-inoculated soils could be explained by the bacteria which belong to the detected taxa,. showing a high prevalence of Proteobacteria, Cyanobacteria and Actinobacteria.