Cargando…

Super-Resolution Ultrasound Localization Microscopy Using High-Frequency Ultrasound to Measure Ocular Perfusion Velocity in the Rat Eye

Imaging of the ocular vasculature can provide new insights into the pathophysiology of ocular diseases. This study proposes a novel high-frequency super-resolution ultrasound localization microscopy (SRULM) technique and evaluates its ability to measure in vivo perfusion changes in the rat eye at el...

Descripción completa

Detalles Bibliográficos
Autores principales: Ul Banna, Hasan, Mitchell, Benjamin, Chen, Stephen, Palko, Joel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295416/
https://www.ncbi.nlm.nih.gov/pubmed/37370620
http://dx.doi.org/10.3390/bioengineering10060689
Descripción
Sumario:Imaging of the ocular vasculature can provide new insights into the pathophysiology of ocular diseases. This study proposes a novel high-frequency super-resolution ultrasound localization microscopy (SRULM) technique and evaluates its ability to measure in vivo perfusion changes in the rat eye at elevated intraocular pressure (IOP). A 38.4 MHz center frequency linear array transducer on a VisualSonics Vevo F2 imaging platform was used to collect high frame rate (1 kHz) radiofrequency data of the posterior rat eye following systemic microbubble contrast injection. Following clutter and spatiotemporal non-local means filtering, individual microbubbles were localized and tracked. The microbubble tracks were accumulated over 10,000 frames to generate vascular images quantifying perfusion velocity and direction. Experiments were performed using physiologic relevant controlled flow states for algorithm validation and subsequently performed in vivo on the rat eye at 10 mm Hg IOP increments from 10 to 60 mm Hg. The posterior vasculature of the rat eye, including the ophthalmic artery, long posterior ciliary arteries and their branches, central retinal artery and retinal arterioles and venules were successfully visualized, and velocities quantified at each IOP level. Significant reductions in arterial flow were measured as IOP was elevated. High-frequency SRULM can be used to visualize and quantify the perfusion velocity of the rat eye in both the retrobulbar and intraocular vasculature simultaneously. The ability to detect ocular perfusion changes throughout the depth of the eye may help elucidate the role ischemia has in the pathophysiology of ocular diseases such as glaucoma.